

Learning	Quantitative	Finance	with	R

Table	of	Contents

Learning	Quantitative	Finance	with	R
Credits
About	the	Authors
About	the	Reviewer
www.PacktPub.com

Why	subscribe?
Customer	Feedback
Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Errata
Piracy
Questions

1.	Introduction	to	R
The	need	for	R
How	to	download/install	R
How	to	install	packages

Installing	directly	from	CRAN
Installing	packages	manually

Data	types
Vectors
Lists
Matrices
Arrays
Factors
DataFrames

Importing	and	exporting	different	data	types
How	to	read	and	write	a	CSV	format	file
XLSX
Web	data	or	online	sources	of	data
Databases

How	to	write	code	expressions
Expressions

Constant	expression
Arithmetic	expression
Conditional	expression

Functional	call	expression
Symbols	and	assignments
Keywords
Naming	variables

Functions
Calling	a	function	without	an	argument
Calling	a	function	with	an	argument
How	to	execute	R	programs
How	to	run	a	saved	file	through	R	Window
How	to	source	R	script

Loops	(for,	while,	if,	and	if...else)
if	statement
if...else	statement
for	loop
while	loop
apply()
sapply()

Loop	control	statements
break
next

Questions
Summary

2.	Statistical	Modeling
Probability	distributions

Normal	distribution
norm
pnorm
qnorm
rnorm

Lognormal	distribution
dlnorm
plnorm
qlnorm
rlnorm

Poisson	distribution
Uniform	distribution
Extreme	value	theory

Sampling
Random	sampling
Stratified	sampling

Statistics
Mean
Median
Mode
Summary

Moment
Kurtosis
Skewness

Correlation
Autocorrelation
Partial	autocorrelation
Cross-correlation

Hypothesis	testing
Lower	tail	test	of	population	mean	with	known	variance
Upper	tail	test	of	population	mean	with	known	variance
Two-tailed	test	of	population	mean	with	known	variance
Lower	tail	test	of	population	mean	with	unknown	variance
Upper	tail	test	of	population	mean	with	unknown	variance
Two	tailed	test	of	population	mean	with	unknown	variance

Parameter	estimates
Maximum	likelihood	estimation
Linear	model

Outlier	detection
Boxplot
LOF	algorithm

Standardization
Normalization
Questions
Summary

3.	Econometric	and	Wavelet	Analysis
Simple	linear	regression

Scatter	plot
Coefficient	of	determination
Significance	test
Confidence	interval	for	linear	regression	model
Residual	plot
Normality	distribution	of	errors

Multivariate	linear	regression
Coefficient	of	determination

Confidence	interval
Multicollinearity
ANOVA
Feature	selection

Removing	irrelevant	features
Stepwise	variable	selection

Variable	selection	by	classification
Ranking	of	variables
Wavelet	analysis
Fast	Fourier	transformation
Hilbert	transformation

Questions
Summary

4.	Time	Series	Modeling
General	time	series
Converting	data	to	time	series
zoo

Constructing	a	zoo	object
Reading	an	external	file	using	zoo
Advantages	of	a	zoo	object

Subsetting	the	data
Merging	zoo	objects
Plotting	zoo	objects

Disadvantages	of	a	zoo	object
xts

Construction	of	an	xts	object	using	as.xts
Constructing	an	xts	object	from	scratch

Linear	filters
AR
MA
ARIMA
GARCH
EGARCH
VGARCH
Dynamic	conditional	correlation
Questions
Summary

5.	Algorithmic	Trading
Momentum	or	directional	trading

Pairs	trading
Distance-based	pairs	trading
Correlation	based	pairs	trading
Co-integration	based	pairs	trading

Capital	asset	pricing	model
Multi	factor	model
Portfolio	construction
Questions
Summary

6.	Trading	Using	Machine	Learning
Logistic	regression	neural	network
Neural	network
Deep	neural	network
K	means	algorithm
K	nearest	neighborhood
Support	vector	machine
Decision	tree

Random	forest
Questions
Summary

7.	Risk	Management
Market	risk
Portfolio	risk
VaR

Parametric	VaR
Historical	VaR

Monte	Carlo	simulation
Hedging
Basel	regulation
Credit	risk
Fraud	detection
Liability	management
Questions
Summary

8.	Optimization
Dynamic	rebalancing

Periodic	rebalancing
Walk	forward	testing
Grid	testing
Genetic	algorithm
Questions
Summary

9.	Derivative	Pricing
Option	pricing

Black-Scholes	model
Cox-Ross-Rubinstein	model
Greeks

Implied	volatility
Bond	pricing
Credit	spread
Credit	default	swaps
Interest	rate	derivatives
Exotic	options
Questions
Summary

Learning	Quantitative	Finance	with	R

Learning	Quantitative	Finance	with	R
Copyright	©	2017	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for
any	damages	caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot
guarantee	the	accuracy	of	this	information.

First	published:	March	2017

Production	reference:	1210317

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham

B3	2PB,	UK.

ISBN	978-1-78646-241-1

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Dr.	Param	Jeet

Prashant	Vats

Copy	Editor

Safis	Editing

Reviewer

Manuel	Amunategui

Project	Coordinator

Shweta	H	Birwatkar

Commissioning	Editor

Amey	Varangaonkar

Proofreader

Safis	Editing

Acquisition	Editor

Varsha	Shetty

Indexer

Mariammal	Chettiyar

Content	Development	Editor

Amrita	Noronha

Graphics

Tania	Dutta

Technical	Editor

Akash	Patel

Production	Coordinator

Arvindkumar	Gupta

About	the	Authors
Dr.	Param	Jeet	is	a	Ph.D.	in	mathematics	from	one	of	India's	leading	technological	institute	in	Madras
(IITM),	India.	Dr.	Param	Jeet	has	a	couple	of	mathematical	research	papers	published	in	various
international	journals.	Dr.	Param	Jeet	has	been	into	the	analytics	industry	for	the	last	few	years	and	has
worked	with	various	leading	multinational	companies	as	well	as	consulted	few	of	companies	as	a	data
scientist.

I	would	like	to	thank	my	parents,	S.	Dhayan	Singh	&	Jeet	Kaur,	who	always	supported	me	in	every
phase	of	my	life,	my	wife,	Manpreet	Kaur,	who	every	time	put	herself	behind	me	with	full	energy	and
encourage	me	to	write	book,	my	little	boy,	Kavan	Singh,	whose	innocence	and	little	smile	always
cherished	me	to	work	and	all	family	members.	I	also	would	like	to	thanks	my	Doctorate	thesis	advisor,
Prof.	Satyajit	Roy,	all	the	mentors	I've	had	over	the	years,	colleagues	and	friends	without	their	help
this	book	would	not	have	been	possible.	With	all	these,	I	would	like	to	share	my	knowledge	with
everyone	who	is	keen	to	learn	quantitative	finance	using	R.

Prashant	Vats	is	a	masters	in	mathematics	from	one	of	India’s	leading	technological	institute,	IIT
Mumbai.	Prashant	has	been	into	analytics	industry	for	more	than	10	years	and	has	worked	with	various
leading	multinational	companies	as	well	as	consulted	few	of	companies	as	data	scientist	across	several
domain.

I	would	like	to	thank	my	parents,	Late	Devendra	K.	Singh	&	Sushila	Sinha,	who	allowed	me	to	follow
my	dreams	and	have	always	supported	me	throughout	my	career.	I	would	like	to	thank	my	wife,
Namrata	for	standing	beside	me	in	all	phases	of	my	life	and	supporting	me	to	write	this	book,	my	little
boy,	Aahan	Vats	whose	smile	always	inspires	me	.	I	also	would	like	to	thank	all	the	mentors	I've	had
over	the	years,	co-workers	and	friends	without	their	help	this	book	would	not	have	been	possible.	With
all	these,	I	would	like	to	share	my	knowledge	with	everyone	who	is	keen	to	learn	quantitative	finance
using	R.

About	the	Reviewer
Manuel	Amunategui	is	an	applied	data	scientist.	He	has	implemented	enterprise	predictive	solutions	for
many	industries,	including	healthcare,	finance,	and	sales.	Prior	to	that,	he	worked	as	a	quantitative
developer	on	Wall	Street	for	6	years	for	one	of	the	largest	equity-options	market-making	firms,	and	as	a
software	developer	at	Microsoft	for	4	years.

He	holds	master	degrees	in	Predictive	Analytics	from	Northwestern	University	and	in	International
Administration	from	the	School	for	International	Training.

He	is	currently	the	VP	of	Data	Science	at	SpringML,	a	startup	focused	on	offering	advanced	and
predictive	CRM	analytics	advice,	dashboards,	and	automation.	SpringML’s	clients	include	Google	Cloud
Platform,	Chevron,	Yamaha,	Tesoro,	and	Salesforce.

He	is	a	data	science	advocate,	blogger/vlogger	(amunategui.github.io)	and	a	trainer	on	Udemy.com	and
O’Reilly	Media.

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub	files
available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print	book	customer,
you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more
details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a	range	of
free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and	eBooks.

	

	

	

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt	books	and
video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal	development	and	advance
your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Customer	Feedback
Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our	editorial	process.	To	help	us
improve,	please	leave	us	an	honest	review	on	this	book's	Amazon	page	at
http://www.amazon.com/dp/1786462419.

If	you'd	like	to	join	our	team	of	regular	reviewers,	you	can	e-mail	us	at	customerreviews@packtpub.com.
We	award	our	regular	reviewers	with	free	eBooks	and	videos	in	exchange	for	their	valuable	feedback.
Help	us	be	relentless	in	improving	our	products!

http://www.amazon.com/dp/1786462419

Preface
Learning	Quantitative	Finance	with	R	explains	practical	examples	of	quantitative	finance	in	the
statistical	language	R.	This	book	has	been	written	with	the	intention	of	passing	knowledge	to	people	who
are	interested	in	learning	quantitative	finance	with	R.	In	this	book,	we	have	covered	various	topics,
ranging	from	basic	level	to	advance	level.	In	particular,	we	have	covered	statistical,	time	series,	and
wavelet	analysis	along	with	their	applications	in	algorithmic	trading.	We	have	also	done	our	best	to
explain	some	applications	of	machine	learning,	risk	management,	optimization,	and	option	pricing	in	this
book.

What	this	book	covers
Chapter	1,	Introduction	to	R,	explains	basic	commands	in	R.	It	starts	with	the	installation	of	R	and	its
packages	and	moves	on	to	data	types,	DataFrames,	and	loops.	This	chapter	also	covers	how	to	write	and
call	functions	and	how	to	import	data	files	of	various	formats	into	R.	This	chapter	is	meant	to	provide	a
basic	understanding	of	R.

Chapter	2,	Statistical	Modeling,	talks	about	the	exploratory	analysis	like	common	distribution,
correlation,	measure	of	central	tendencies,	outlier	detection	to	better	understand	the	data.	It	also	talks
about	sampling	and	standardization/	Normalization	of	the	data	which	helps	in	preparing	the	data	for
analysis.	Further	this	chapter	also	deals	with	hypothesis	testing	and	parameter	estimation.

Chapter	3,	Econometric	and	Wavelet	Analysis,	covers	simple	and	multivariate	linear	regression	models,
which	are	the	backbone	of	every	analysis.	An	explanation	of	ANOVA	and	feature	selection	adds	flavor	to
this	chapter.	We	also	build	a	few	models	using	wavelets	analysis.

Chapter	4,	Time	Series	Modeling,	in	this	chapter	the	author	presents	the	examples	to	convert	data	in	time
series	using	ts,	zoo	and	xts	which	works	as	the	base	for	forecasting	models.	Then	the	author	talks	about
various	forecasting	techniques	like	AR,	ARIMA,	GARCH,VGARCH	etc.	and	its	execution	in	R	along
with	examples.

Chapter	5,	Algorithmic	Trading,	contains	some	live	examples	from	the	algorithmic	trading	domain,
including	momentum	trading	and	pair	trading	using	various	methods.	CAPM,	multifactor	model,	and
portfolio	construction	are	also	covered	in	this	chapter.

Chapter	6,	Trading	Using	Machine	Learning,	shows	how	to	model	a	machine	learning	algorithm	using
capital	market	data.	This	covers	supervised	and	unsupervised	algorithms.

Chapter	7,	Risk	Management,	in	this	chapter	the	author	discusses	the	techniques	to	measure	market	and
portfolio	risk.	He	also	captures	the	common	methods	used	for	calculation	of	VAR.	He	also	gives
examples	of	the	best	practices	used	in	banking	domain	for	measuring	credit	risk.

Chapter	8,	Optimization,	in	this	chapter	the	author	demonstrates	examples	of	optimization	techniques	like
dynamic	rebalancing,	walk	forward	testing,	grid	testing,	genetic	algorithm	in	financial	domain.

Chapter	9,	Derivative	Pricing,	use	cases	of	R	in	derivative	pricing.	It	covers	vanilla	option	pricing	along
with	exotic	options,	bonds	pricing,	credit	spread	and	credit	default	swaps.	This	chapter	is	complex	in
nature	and	require	people	to	have	some	basic	understanding	of	derivatives.

What	you	need	for	this	book
First	of	all,	you	should	make	sure	that	R	is	installed	on	your	machine.	All	the	examples	in	this	book	have
been	implemented	in	R	and	can	be	executed	on	the	R	console.	R	is	an	open	source	platform	and	can	be
installed	free	of	charge	for	any	operating	system	from	https://www.r-project.org/.	Installation	guidelines
are	also	found	on	this	website.	Once	you	have	R	on	your	machine,	you	can	straightaway	go	to	chapter	1
and	start.	Each	chapter	explains	about	the	required	packages,	shows	how	to	install	packages,	and	and	tells
the	reader	how	to	load	them	into	the	workspace.

https://www.r-project.org/

Who	this	book	is	for
This	book	is	written	with	the	intent	to	pass	knowledge	to	people	who	are	interested	in	learning	R	and	its
application	in	analytics.	However,	we	have	covered	examples	from	finance.	This	book	covers	basic	to
complex	finance	examples,	along	with	varying	degrees	of	complexity	of	R	coding.	This	book	does	not
expect	you	to	have	prior	R	programming	knowledge,	however	this	expects	you	to	have	little	bit
knowledge	of	mathematical	analytical	concepts.	Even	if	you	are	well	versed	with	R,	this	book	can	still	be
of	great	help	to	you	as	it	explains	various	live	examples	from	the	data	analytics	industry,	in	particular,
capital	markets.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,	dummy
URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	The	quantmod	package	is	used	quite	a	few
times."

A	block	of	code	is	set	as	follows:

>getSymbols("^DJI",src="yahoo")

>dji<-	DJI[,"DJI.Close"]

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant	lines	or	items	are
set	in	bold:

corr<-	rollapply(data,252,correlation	,by.column=FALSE)

For	any	R	command	we	have	used	>,	which	means	this	command	has	been	written	on	the	command
prompt,	as	>,	implies	command	prompt.

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in	menus	or	dialog
boxes	for	example,	appear	in	the	text	like	this:	"Clicking	the	Next	button	moves	you	to	the	next	screen."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book-what	you
liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles	that	you	will	really	get
the	most	out	of.	To	send	us	general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention	the
book's	title	in	the	subject	of	your	message.	If	there	is	a	topic	that	you	have	expertise	in	and	you	are
interested	in	either	writing	or	contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get	the	most
from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at	http://www.packtpub.com.	If
you	purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have
the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest	version
of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPublishing/Learning-
Quantitative-Finance-with-R.	We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-Quantitative-Finance-with-R
https://github.com/PacktPublishing/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If	you	find
a	mistake	in	one	of	our	books-maybe	a	mistake	in	the	text	or	the	code-we	would	be	grateful	if	you	could
report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve	subsequent
versions	of	this	book.	If	you	find	any	errata,	please	report	them	by	visiting
http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the	Errata	Submission	Form
link,	and	entering	the	details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be
accepted	and	the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/support	and
enter	the	name	of	the	book	in	the	search	field.	The	required	information	will	appear	under	the	Errata
section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At	Packt,	we	take
the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal	copies	of	our
works	in	any	form	on	the	Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at	questions@packtpub.com,	and
we	will	do	our	best	to	address	the	problem.

Chapter	1.	Introduction	to	R
In	this	chapter,	we	will	be	discussing	basic	R	concepts.	This	will	serve	as	the	background	for	upcoming
chapters.	We	are	not	going	to	discuss	each	and	every	concept	in	detail	for	R.	This	chapter	is	meant	for
people	who	do	not	have	any	knowledge	of	the	R	language	or	beginners	who	are	looking	to	pursue	a	career
in	quantitative	finance	or	want	to	use	R	for	quantitative	financial	analysis.	This	chapter	can	give	you	a
start	in	learning	how	to	write	programs	in	R,	and	for	writing	complex	programs,	you	can	explore	other
books.

This	chapter	covers	the	following	topics:

The	need	for	R
How	to	download/install	R
How	to	install	packages
Data	types
Import	and	export	of	different	data	types
How	to	write	code	expressions
Functions
How	to	execute	R	programs
Loops	(for,	while,	if,	and	if...else)

The	need	for	R
There	are	so	many	statistical	packages	which	can	be	used	for	solving	problems	in	quantitative	finance.
But	R	is	not	a	statistical	package	but	it	is	a	language.	R	is	a	flexible	and	powerful	language	for	achieving
high-quality	analysis.

To	use	R,	one	does	not	need	to	be	a	programmer	or	computer-subject	expert.	The	knowledge	of	basic
programming	definitely	helps	in	learning	R,	but	it	is	not	a	prerequisite	for	getting	started	with	R.

One	of	the	strengths	of	R	is	its	package	system.	It	is	vast.	If	a	statistical	concept	exists,	chances	are	that
there	is	already	a	package	for	it	in	R.	There	exist	many	functionalities	that	come	built	in	for	statistics	/
quantitative	finance.

R	is	extendable	and	provides	plenty	of	functionalities	which	encourage	developers	in	quant	finance	to
write	their	own	tools	or	methods	to	solve	their	analytical	problems.

The	graphing	and	charting	facilities	present	in	R	are	unparalleled.	R	has	a	strong	relationship	with
academia.	As	new	research	gets	published,	the	likelihood	is	that	a	package	for	the	new	research	gets
added,	due	to	its	open	source	nature,	which	keeps	R	updated	with	the	new	concepts	emerging	in	quant
finance.

R	was	designed	to	deal	with	data,	but	when	it	came	into	existence,	big	data	was	nowhere	in	the	picture.
Additional	challenges	dealing	with	big	data	are	the	variety	of	data	(text	data,	metric	data,	and	so	on),	data
security,	memory,	CPU	I/O	RSC	requirements,	multiple	machines,	and	so	on.	Techniques	such	as	map-
reducing,	in-memory	processing,	streaming	data	processing,	down-sampling,	chunking,	and	so	on	are
being	used	to	handle	the	challenges	of	big	data	in	R.

Furthermore,	R	is	free	software.	The	development	community	is	fantastic	and	easy	to	approach,	and	they
are	always	interested	in	developing	new	packages	for	new	concepts.	There	is	a	lot	of	documentation
available	on	the	Internet	for	different	packages	of	R.

Thus,	R	is	a	cost-effective,	easy-to-learn	tool.	It	has	very	good	data	handling,	graphical,	and	charting
capabilities.	It	is	a	cutting-edge	tool	as,	due	to	its	open	nature,	new	concepts	in	finance	are	generally
accompanied	by	new	R	packages.	It	is	demand	of	time	for	people	pursuing	a	career	in	quantitative	finance
to	learn	R.

How	to	download/install	R
In	this	section,	we	are	going	to	discuss	how	to	download	and	install	R	for	various	platforms:	Windows,
Linux,	and	Mac.

Open	your	web	browser	and	go	to	the	following	link:	https://cran.rstudio.com/.

From	the	given	link,	you	can	download	the	required	version	according	to	the	available	operating	system.

For	the	Windows	version,	click	on	Download	R	for	Windows,	and	then	select	the	base	version	and
download	Download	R	3.3.1	for	Windows	for	your	Windows	operating	system,	click	on	it,	and	select
your	favorite	language	option.	Now	click	through	the	installer	and	it	will	take	you	through	various
options,	such	as	the	following:

1.	 Setup	Wizard.
2.	 License	Agreement.
3.	 Select	folder	location	where	you	want	to	install.
4.	 Select	the	component.	Select	the	option	according	to	the	configuration	of	your	system;	if	you	do	not

know	the	configuration	of	your	system,	then	select	all	the	options.
5.	 If	you	want	to	customize	your	setup,	select	the	option.
6.	 Select	the	R	launch	options	and	desktop	shortcut	options	according	to	your	requirements.

R	download	and	installation	is	complete	for	Windows.

Similarly,	you	click	on	your	installer	for	Linux	and	Mac	and	it	will	take	you	through	various	options	of
installation.

https://cran.rstudio.com/

How	to	install	packages
R	packages	are	a	combination	of	R	functions,	compiled	code,	and	sample	data,	and	their	storage	directory
is	known	as	a	library.	By	default,	when	R	is	installed,	a	set	of	packages	gets	installed	and	the	rest	of	the
packages	you	have	to	add	when	required.

A	list	of	commands	is	given	here	to	check	which	packages	are	present	in	your	system:

>.libPaths()

The	preceding	command	is	used	for	getting	or	setting	the	library	trees	that	R	knows	about.	It	gives	the
following	result:

"C:/Program	Files/R/R-3.3.1/library"

After	this,	execute	the	following	command	and	it	will	list	all	the	available	packages:

>library()

There	are	two	ways	to	install	new	packages.

Installing	directly	from	CRAN
CRAN	stands	for	Comprehensive	R	Archive	Network.	It	is	a	network	of	FTP	web	servers	throughout
the	globe	for	storing	identical,	up-to-date	versions	of	code	and	documentation	for	R.

The	following	command	is	used	to	install	the	package	directly	from	the	CRAN	web	page.	You	need	to
choose	the	appropriate	mirror:

>install.packages("Package")

For	example,	if	you	need	to	install	the	ggplot2	or	forecast	package	for	R,	the	commands	are	as
follows:	>install.packages("ggplot2")	>install.packages("forecast")

Installing	packages	manually
Download	the	required	R	package	manually	and	save	the	ZIP	version	at	your	designated	location	(let's	say
/DATA/RPACKAGES/)	on	the	system.

For	example,	if	we	want	to	install	ggplot2,	then	run	the	following	command	to	install	it	and	load	it	to	the
current	R	environment.	Similarly,	other	packages	can	also	be	installed:	>install.packages("ggplot2",
lib="/data/Rpackages/")	>library(ggplot2,	lib.loc="/data/Rpackages/")

Data	types
In	any	programming	language,	one	needs	to	store	various	pieces	of	information	using	various	variables.
Variables	are	reserved	memory	locations	for	storing	values.	So	by	creating	a	variable,	one	is	reserving
some	space	in	the	memory.	You	may	like	to	store	various	types	of	data	types,	such	as	character,	floating
point,	Boolean,	and	so	on.	On	the	basis	of	data	type,	the	operating	system	allocates	memory	and	decides
what	can	be	stored	in	reserved	memory.

All	the	things	you	encounter	in	R	are	called	objects.

R	has	five	types	of	basic	objects,	also	known	as	atomic	objects,	and	the	rest	of	the	objects	are	built	on
these	atomic	objects.	Now	we	will	give	an	example	of	all	the	basic	objects	and	will	verify	their	class:

Character:

We	assign	a	character	value	to	a	variable	and	verify	its	class:

								>a	<-	"hello"

								>print(class(a))

The	result	produced	is	as	follows:

								[1]	"character"

Numeric:

We	assign	a	numeric	value	to	a	variable	and	verify	its	class:

								>a	<-	2.5

								>print(class(a))

The	result	produced	is	as	follows:

								[1]	"numeric"

Integer:

We	assign	an	integer	value	to	a	variable	and	verify	its	class:

								>a	<-	6L

								>print(class(a))

The	result	produced	is	as	follows:

								[1]	"integer"

Complex:

We	assign	an	integer	value	to	a	variable	and	verify	its	class:

								>a	<-	1	+	2i

								>print(class(a))

The	result	produced	is	as	follows:

								[1]	"complex"

Logical	(True/false):

We	assign	an	integer	value	to	a	variable	and	verify	its	class:

								>a	<-	TRUE

>print(class(a))

Then	the	result	produced	is	as	follows:

[1]	"logical"

The	basic	types	of	objects	in	R	are	known	as	vectors	and	they	consist	of	similar	types	of	objects.	They
cannot	consist	of	two	different	types	of	objects	at	the	same	time,	such	as	a	vector	consisting	of	both
character	and	numeric.

But	list	is	an	exception,	and	it	can	consist	of	multiple	classes	of	objects	at	the	same	time.	So	a	list	can
simultaneously	contain	a	character,	a	numeric,	and	a	list.

Now	we	will	discuss	the	common	data	types	present	in	R	and	give	at	least	one	example	for	each	data	type
discussed	here.

Vectors
Vectors	have	already	been	defined.	If	we	want	to	construct	a	vector	with	more	than	one	element,	we	can
use	the	c()	function	which	combines	the	elements	into	a	vector,	for	example:

>a<-"Quantitative"	

>b<-"Finance"	

>c(a,b)	

This	produces	the	following	result:

[1]	"Quantitative"	"Finance"			

Similarly:

>Var<-c(1,2,3)	

>Var	

This	produces	the	following	result:

[1]	1	2	3	

Lists
A	list	is	an	R	object	that	consists	of	multiple	types	of	objects	inside	it,	such	as	vectors	and	even	lists.	For
example,	let's	construct	a	list	and	print	it	using	code:

#Create	a	List	and	print	it	

>List1	=	list(c(4,5,6),"Hello",	24.5)	

>print(List1)	

When	we	execute	the	previous	command,	it	produces	the	following	result:

[[1]]	

[1]	4	5	6	

			

[[2]]	

[1]	"Hello"	

	

[[3]]	

[1]	24.5	

We	can	extract	the	individual	elements	of	the	list	according	to	our	requirements.

For	example,	in	the	preceding	case,	if	we	want	to	extract	the	second	element:

>print(List1[2])	

Upon	executing	the	preceding	code,	R	creates	the	following	output:

[[1]]	

[1]	"Hello"	

One	can	merge	the	two	lists	using	the	function	c();	for	example:

>list1	<-	list(5,6,7)	

>list2	<-	list("a","b","c")	

>Combined_list	<-c(list1,list2)	

>print(Combined_list)	

Upon	executing	the	preceding	command,	we	get	the	combined	list:

[[1]]	

[1]	5	

	

[[2]]	

[1]	6	

	

[[3]]	

[1]	7	

	

[[4]]	

[1]	"a"	

	

[[5]]	

[1]	"b"	

	

[[6]]	

[1]	"c"	

Matrices
A	matrix	is	a	two-dimensional	rectangular	dataset,	and	it	is	created	by	vector	input	to	the	matrix()
function.

For	example,	create	a	matrix	with	two	rows	and	three	columns,	and	print	it:

>M	<-	matrix(c(1,2,3,4,5,6),	nrow	=	2,	ncol	=	3)	

>print(M)	

When	we	execute	the	preceding	code,	it	produces	the	following	result:

[,1]	[,2]	[,3]	

[1,]				1				3				5	

[2,]				2				4				6	

Arrays
Matrices	are	confined	to	only	two	dimensions,	but	arrays	can	be	of	any	dimension.	The	array()	function
takes	a	dim	attribute,	which	creates	the	needed	dimensions.

For	example,	create	an	array	and	print	it:

>a	<-	array(c(4,5),dim	=	c(3,3,2))	

>print(a)	

When	we	execute	the	previous	code,	it	produces	the	following	result:

,	,	1	

					[,1]	[,2]	[,3]	

[1,]				4				5				4	

[2,]				5				4				5	

[3,]				4				5				4	

	

,	,	2	

	

					[,1]	[,2]	[,3]	

[1,]				5				4				5	

[2,]				4				5				4	

[3,]				5				4				5	

Factors
Factors	are	R	objects	that	are	created	using	a	vector.	It	stores	the	vector	along	with	the	distinct	elements
present	in	the	vector	as	labels.	Labels	are	always	in	character	form,	irrespective	of	whether	it	is	numeric,
character,	or	Boolean.

Factors	are	created	using	the	factor()	function,	and	the	count	of	levels	is	given	by	n	levels;	for	example:

>a	<-c(2,3,4,2,3)	

>fact	<-factor(a)	

>print(fact)	

>print(nlevels(fact))	

When	the	preceding	code	gets	executed,	it	generates	the	following	results:

[1]	2	3	4	2	3	

Levels:	2	3	4	

[1]	3	

DataFrames
DataFramesare	tabular-form	data	objects	where	each	column	can	be	of	different	form,	that	is,	numeric,
character,	or	logical.	Each	column	consists	of	a	list	of	vectors	having	the	same	length.

DataFrames	are	generated	using	the	function	data.frame();	for	example:

>data	<-data.frame(

>+Name	=	c("Alex",	"John",	"Bob"),	

>+Age	=	c(18,20,23),	

>+Gender	=c("M","M","M")	

>+)	

>print(data)	

When	the	preceding	code	gets	executed,	it	generates	the	following	result:

Name	Age	Gender	

1	Alex		18						M	

2	John		20						M	

3		Bob		23						M	

Importing	and	exporting	different	data	types
In	R,	we	can	read	the	files	stored	from	outside	the	R	environment.	We	can	also	write	the	data	into	files
which	can	be	stored	and	accessed	by	the	operating	system.	In	R,	we	can	read	and	write	different	formats
of	files,	such	as	CSV,	Excel,	TXT,	and	so	on.	In	this	section,	we	are	going	to	discuss	how	to	read	and
write	different	formats	of	files.

The	required	files	should	be	present	in	the	current	directory	to	read	them.	Otherwise,	the	directory	should
be	changed	to	the	required	destination.

The	first	step	for	reading/writing	files	is	to	know	the	working	directory.	You	can	find	the	path	of	the
working	directory	by	running	the	following	code:

>print	(getwd())	

This	will	give	the	paths	for	the	current	working	directory.	If	it	is	not	your	desired	directory,	then	please
set	your	own	desired	directory	by	using	the	following	code:

>setwd("")	

For	instance,	the	following	code	makes	the	folder	C:/Users	the	working	directory:

>setwd("C:/Users")	

How	to	read	and	write	a	CSV	format	file
A	CSV	format	file	is	a	text	file	in	which	values	are	comma	separated.	Let	us	consider	a	CSV	file	with	the
following	content	from	stock-market	data:

Date Open High Low Close Volume Adj	Close

14-10-2016 2139.68 2149.19 2132.98 2132.98 3.23E+09 2132.98

13-10-2016 2130.26 2138.19 2114.72 2132.55 3.58E+09 2132.55

12-10-2016 2137.67 2145.36 2132.77 2139.18 2.98E+09 2139.18

11-10-2016 2161.35 2161.56 2128.84 2136.73 3.44E+09 2136.73

10-10-2016 2160.39 2169.6 2160.39 2163.66 2.92E+09 2163.66

To	read	the	preceding	file	in	R,	first	save	this	file	in	the	working	directory,	and	then	read	it	(the	name	of
the	file	is	Sample.csv)	using	the	following	code:

>data<-read.csv("Sample.csv")	

>print(data)	

When	the	preceding	code	gets	executed,	it	will	give	the	following	output:

Date				Open				High					Low			Close					Volume					Adj.Close	

1		14-10-2016	2139.68	2149.19	2132.98	2132.98	3228150000			2132.98	

2		13-10-2016	2130.26	2138.19	2114.72	2132.55	3580450000			2132.55	

3		12-10-2016	2137.67	2145.36	2132.77	2139.18	2977100000			2139.18	

4		11-10-2016	2161.35	2161.56	2128.84	2136.73	3438270000			2136.73	

5		10-10-2016	2160.39	2169.60	2160.39	2163.66	2916550000			2163.66	

Read.csv	by	default	produces	the	file	in	DataFrame	format;	this	can	be	checked	by	running	the	following
code:

>print(is.data.frame(data))	

Now,	whatever	analysis	you	want	to	do,	you	can	perform	it	by	applying	various	functions	on	the
DataFrame	in	R,	and	once	you	have	done	the	analysis,	you	can	write	your	desired	output	file	using	the
following	code:

>write.csv(data,"result.csv")	

>output	<-	read.csv("result.csv")	

>print(output)	

When	the	preceding	code	gets	executed,	it	writes	the	output	file	in	the	working	directory	folder	in	CSV
format.

XLSX
Excel	is	the	most	common	format	of	file	for	storing	data,	and	it	ends	with	extension	.xls	or	.xlsx.

The	xlsx	package	will	be	used	to	read	or	write	.xlsx	files	in	the	R	environment.

Installing	the	xlsx	package	has	dependency	on	Java,	so	Java	needs	to	be	installed	on	the	system.	The
xlsx	package	can	be	installed	using	the	following	command:

>install.packages("xlsx")

When	the	previous	command	gets	executed,	it	will	ask	for	the	nearest	CRAN	mirror,	which	the	user	has	to
select	to	install	the	package.	We	can	verify	that	the	package	has	been	installed	or	not	by	executing	the
following	command:

>any(grepl("xlsx",installed.packages()))

If	it	has	been	installed	successfully,	it	will	show	the	following	output:

[1]	TRUE

Loading	required	package:	rJava

Loading	required	package:	methods

Loading	required	package:	xlsxjars

We	can	load	the	xlsx	library	by	running	the	following	script:

>library("xlsx")	

Now	let	us	save	the	previous	sample	file	in	.xlsx	format	and	read	it	in	the	R	environment,	which	can	be
done	by	executing	the	following	code:

>data	<-	read.xlsx("Sample.xlsx",	sheetIndex	=	1)	

>print(data)	

This	gives	a	DataFrame	output	with	the	following	content:

Date				Open				High					Low			Close					Volume				Adj.Close	

1	2016-10-14	2139.68	2149.19	2132.98	2132.98	3228150000			2132.98	

2	2016-10-13	2130.26	2138.19	2114.72	2132.55	3580450000			2132.55	

3	2016-10-12	2137.67	2145.36	2132.77	2139.18	2977100000			2139.18	

4	2016-10-11	2161.35	2161.56	2128.84	2136.73	3438270000			2136.73	

5	2016-10-10	2160.39	2169.60	2160.39	2163.66	2916550000			2163.66	

Similarly,	you	can	write	R	files	in	.xlsx	format	by	executing	the	following	code:

>output<-write.xlsx(data,"result.xlsx")	

>output<-	read.csv("result.csv")	

>print(output)	

Web	data	or	online	sources	of	data
The	Web	is	one	main	source	of	data	these	days,	and	we	want	to	directly	bring	the	data	from	web	form	to
the	R	environment.	R	supports	this:

URL	<-	"http://ichart.finance.yahoo.com/table.csv?s=^GSPC"	

snp	<-	as.data.frame(read.csv(URL))	

head(snp)	

When	the	preceding	code	is	executed,	it	directly	brings	the	data	for	the	S&P500	index	into	R	in	DataFrame
format.	A	portion	of	the	data	has	been	displayed	by	using	the	head()	function	here:

Date				Open				High					Low			Close					Volume			Adj.Close	

1	2016-10-14	2139.68	2149.19	2132.98	2132.98	3228150000			2132.98	

2	2016-10-13	2130.26	2138.19	2114.72	2132.55	3580450000			2132.55	

3	2016-10-12	2137.67	2145.36	2132.77	2139.18	2977100000			2139.18	

4	2016-10-11	2161.35	2161.56	2128.84	2136.73	3438270000			2136.73	

5	2016-10-10	2160.39	2169.60	2160.39	2163.66	2916550000			2163.66	

6	2016-10-07	2164.19	2165.86	2144.85	2153.74	3619890000			2153.74	

Similarly,	if	we	execute	the	following	code,	it	brings	the	DJI	index	data	into	the	R	environment:	its
sample	is	displayed	here:

>URL	<-	"http://ichart.finance.yahoo.com/table.csv?s=^DJI"	

>dji	<-	as.data.frame(read.csv(URL))	

>head(dji)	

This	gives	the	following	output:

Date					Open					High						Low				Close			Volume		Adj.Close	

1	2016-10-14	18177.35	18261.11	18138.38	18138.38	87050000		18138.38	

2	2016-10-13	18088.32	18137.70	17959.95	18098.94	83160000		18098.94	

3	2016-10-12	18132.63	18193.96	18082.09	18144.20	72230000		18144.20	

4	2016-10-11	18308.43	18312.33	18061.96	18128.66	88610000		18128.66	

5	2016-10-10	18282.95	18399.96	18282.95	18329.04	72110000		18329.04	

6	2016-10-07	18295.35	18319.73	18149.35	18240.49	82680000		18240.49	

Please	note	that	we	will	be	mostly	using	the	snp	and	dji	indexes	for	example	illustrations	in	the	rest	of
the	book	and	these	will	be	referred	to	as	snp	and	dji.

Databases
A	relational	database	stores	data	in	normalized	format,	and	to	perform	statistical	analysis,	we	need	to
write	complex	and	advance	queries.	But	R	can	connect	to	various	relational	databases	such	as	MySQL
Oracle,	and	SQL	Server,	easily	and	convert	the	data	tables	into	DataFrames.	Once	the	data	is	in
DataFrame	format,	doing	statistical	analysis	is	easy	to	perform	using	all	the	available	functions	and
packages.

In	this	section,	we	will	take	the	example	of	MySQL	as	reference.

R	has	a	built-in	package,	RMySQL	,	which	provides	connectivity	with	the	database;	it	can	be	installed
using	the	following	command:

>install.packages("RMySQL")

Once	the	package	is	installed,	we	can	create	a	connection	object	to	create	a	connection	with	the	database.
It	takes	username,	password,	database	name,	and	localhost	name	as	input.	We	can	give	our	inputs	and	use
the	following	command	to	connect	with	the	required	database:

>mysqlconnection	=	dbConnect(MySQL(),	user	=	'...',	password	=	'...',	dbname	=	

'..',host	=	'.....')

When	the	database	is	connected,	we	can	list	the	table	that	is	present	in	the	database	by	executing	the
following	command:

>dbListTables(mysqlconnection)

We	can	query	the	database	using	the	function	dbSendQuery(),	and	the	result	is	returned	to	R	by	using
function	fetch().	Then	the	output	is	stored	in	DataFrame	format:

>result	=	dbSendQuery(mysqlconnection,	"select	*	from	<table	name>")	

>data.frame	=	fetch(result)	

>print(data.fame)	

When	the	previous	code	gets	executed,	it	returns	the	required	output.

We	can	query	with	a	filter	clause,	update	rows	in	database	tables,	insert	data	into	a	database	table,	create
tables,	drop	tables,	and	so	on	by	sending	queries	through	dbSendQuery().

How	to	write	code	expressions
In	this	section,	we	will	discuss	how	to	write	various	basic	expressions	which	are	the	core	elements	of
writing	a	program.	Later,	we	will	discuss	how	to	create	user-defined	functions.

Expressions
R	code	consists	of	one	or	more	expressions.	An	expression	is	an	instruction	to	perform	a	particular	task.

For	example,	the	addition	of	two	numbers	is	given	by	the	following	expression:	>4+5

It	gives	the	following	output:

[1]	9	

If	there	is	more	than	one	expression	in	a	program,	they	get	executed	one	by	one,	in	the	sequence	they
appear.

Now	we	will	discuss	basic	types	of	expressions.

Constant	expression

The	simplest	form	of	expression	are	constant	values,	which	may	be	character	or	numeric	values.

For	example,	100	is	a	numeric	value	expression	of	a	constant	value.

Hello	World	is	a	character	form	expression	of	a	constant	expression.

Arithmetic	expression

The	R	language	has	standard	arithmetic	operators	and	using	these,	arithmetic	expressions	can	be	written.

R	has	the	following	arithmetic	operators:

Operands Operators

+ Addition

- Subtraction

* Multiplication

/ Division

^ Exponentiation

Using	these	arithmetic	operations,	one	can	generate	arithmetic	expressions;	for	example:	4+5	4-5	4*5

R	follows	the	BODMAS	rule.	One	can	use	parentheses	to	avoid	ambiguity	in	creating	any	arithmetic
expression.

Conditional	expression

A	conditional	expression	compares	two	values	and	returns	a	logical	value	in	the	form	of	True	or	False.

R	has	standard	operators	for	comparing	values	and	operators	for	combining	conditions:

Operands Operators

== Equality

>(>=) Greater	than	(greater	than	equal	to)

<(<=) Less	than	(less	than	equal	to)

!= Inequality

&& Logical	AND

|| Logical	OR

! Logical	NOT

For	example:

10>5,	when	executed,	returns	True.

5>10,	when	executed,	returns	False.

Functional	call	expression

The	most	common	and	useful	type	of	R	expression	is	calling	functions.	There	are	a	lot	of	built-in	functions
in	R,	and	users	can	built	their	own	functions.	In	this	section,	we	will	see	the	basic	structure	of	calling	a
function.

A	function	call	consists	of	a	function	name	followed	by	parentheses.	Within	the	parentheses,	arguments
are	present,	separated	by	commas.	Arguments	are	expressions	that	provide	the	necessary	information	to
the	functions	to	perform	the	required	tasks.	An	example	will	be	provided	when	we	discuss	how	to
construct	user-defined	functions.

Symbols	and	assignments
R	code	consists	of	keywords	and	symbols.

A	symbol	is	the	label	for	an	object	stored	in	RAM,	and	it	gets	the	stored	value	from	the	memory	when	the
program	gets	executed.

R	also	stores	many	predefined	values	for	predefined	symbols,	which	is	used	in	the	program	as	required
and	gets	automatically	downloaded.

For	example,	the	date()	function	produces	today's	date	when	executed.

The	result	of	an	expression	can	be	assigned	to	a	symbol,	and	it	is	assigned	by	using	the	assignment
operator	<-.

For	example,	the	expression	value	<-4+6	assigns	the	symbol	value	with	value	10	and	is	stored	in
memory.

Keywords
Some	symbols	are	used	to	represent	special	values	and	cannot	be	reassigned:

NA:	This	is	used	to	define	missing	or	unknown	values
Inf:	This	is	used	to	represent	infinity.	For	example,	1/0	produces	the	result	infinity
NaN:	This	is	used	to	define	the	result	of	arithmetic	expression	which	is	undefined.	For	example,	0/0
produces	NaN
NULL:	This	is	used	to	represent	empty	result
TRUE	and	FALSE:	These	are	logical	values	and	are	generally	generated	when	values	are	compared

Naming	variables
When	writing	R	code,	we	need	to	store	various	pieces	of	information	under	many	symbols.	So	we	need	to
name	these	symbols	meaningfully	as	that	will	make	the	code	easy	to	understand.	Symbols	should	be	self-
explanatory.	Writing	short	symbol	name	will	make	the	code	tougher	to	understand.

For	example,	if	we	represent	date	of	birth	information	by	DateOfBirth	or	DOB,	then	the	first	option	is
better	as	it	is	self-explanatory.

Functions
In	this	section,	we	will	provide	some	examples	of	built-in	functions	that	already	exist	in	R	and	also
construct	a	user-defined	function	for	a	specific	task.

A	function	is	a	collection	of	statements	put	together	to	do	a	specific	task.

R	has	a	lot	of	built-in	functions	and	users	can	define	their	own	functions.

According	to	their	requirement,	in	R,	the	interpreter	passes	control	to	the	function	object	along	with	the
arguments	required	for	the	accomplishment	of	the	task	designated	for	the	function.	After	completing	the
task,	the	function	returns	the	control	to	the	interpreter.

The	syntax	for	defining	a	function	is	as	follows:

>function_name<-function(arg1,	arg2,...){	

>+function	body	

>+}	

Here:

Function	name:	This	is	the	name	of	the	defined	function	and	is	stored	as	an	object	with	this	name.
Arguments:	Arguments	are	the	required	information	needed	for	the	function	to	accomplish	its	task.
Arguments	are	optional.
Function	body:	This	is	a	collection	of	statements	that	does	the	designated	task	for	the	function.
Return	value:	The	return	value	is	the	last	expression	of	a	function	which	is	returned	as	an	output
value	of	the	task	performed	by	the	function.

Please	find	here	an	example	of	some	of	the	inbuilt	functions	along	with	their	results	when	executed:

>print(mean(25:82))	

[1]	53.5	

>print(sum(41:68))	

[1]	1526	

Now	we	will	look	at	how	to	build	the	user-defined	functions.	Here	we	are	trying	to	find	the	square	of	a
given	sequence.

The	name	of	the	function	is	findingSqrFunc	and	takes	the	argument	value,	which	must	be	an	integer:

>findingSqrFunc<-function(value){	

>+for(j	in	1:value){	

>+sqr<-j^2	

>+print(sqr)	

>+}	

>+}	

Once	the	preceding	code	gets	executed,	we	call	the	function:

>findingSqrFunc(4)	

We	get	the	following	output:

[1]	1	

[1]	4	

[1]	9	

[1]	16	

Calling	a	function	without	an	argument
Construct	a	function	without	an	argument:

>Function_test<-function(){	

>+	for(i	in	1:3){	

>+	print(i*5)	

>+	}	

>+	}	

>Function_test()	

On	executing	the	preceding	function	without	arguments,	the	following	output	gets	printed:

[1]	5	

[1]	10	

[1]	15	

Calling	a	function	with	an	argument
The	arguments	to	a	function	can	be	supplied	in	the	same	sequence	as	the	way	it	has	been	defined.
Otherwise	the	arguments	have	to	be	given	in	any	order	but	assigned	to	their	name.	Given	here	are	the
steps	for	creating	and	calling	the	functions:

1.	 First	create	a	function:

>Function_test<-function(a,b,c){	

								>+	result<-a*b+c	

								>+	print(result)	

								>+	}	

2.	 Call	the	function	by	providing	the	arguments	in	the	same	sequence.	It	gives	the	following	output:

>Function_test(2,3,4)	

								[1]	10	

3.	 Call	the	function	by	names	of	arguments	in	any	sequence:

>Function_test(c=4,b=3,a=4)	

This	gives	the	following	output:

[1]	16	

How	to	execute	R	programs
In	this	section,	we	will	discuss	different	ways	of	executing	R	programs.

How	to	run	a	saved	file	through	R	Window
For	running	a	program	in	the	R	workspace,	follow	these	steps:

1.	 Open	R	(double-click	on	the	desktop	icon	or	open	the	program	from	Start).
2.	 Click	on	File	and	open	the	script.
3.	 Select	the	program	you	want	to	run;	it	will	appear	in	an	R	Editor	window.
4.	 Right-click	and	Select	All	(or	type	Ctrl	+	A).
5.	 Right-click	and	Run	Line	or	Selection	(or	type	Ctrl	+	R).
6.	 The	output	will	appear	in	the	R	console	window.

How	to	source	R	script
Please	perform	the	following	steps	for	sourcing	the	R	code:

1.	 First	check	your	working	directory.	It	can	be	checked	by	the	following	code:

>print(getwd())	

2.	 On	running	the	preceding	code,	if	it	gives	the	path	of	the	designated	folder,	it	is	fine.	Otherwise,
change	the	working	directory	by	using	the	following	code:

>setwd("D:/Rcode")		

3.	 Change	the	destination	directory	according	to	your	need	and	then	run	the	required	code	using	the
following	code:

>Source('firstprogram.r')	

For	example,	let's	say	the	program	firstprogram.r	has	the	following	code	in	it:

a<-5	

print(a)	

Upon	sourcing,	it	will	generate	the	output	5	at	the	console.

When	you	want	to	tell	R	to	execute	a	number	of	lines	of	code	without	waiting	for	instructions,	you	can	use
the	source	function	to	run	the	saved	script.	This	is	known	as	sourcing	a	script.

It's	better	to	write	the	entire	code	in	Studio	Editor	and	then	save	it	and	source	the	entire	script.	If	you	want
to	print	an	output	in	source	script	then	please	use	the	print	function	to	get	the	desired	output.	However,	in
the	interactive	editor,	you	do	not	need	to	write	print.	It	will	give	it	by	default.

In	other	operating	systems,	the	command	for	running	the	program	remains	the	same.

Comments	are	parts	of	a	program	that	are	ignored	by	the	interpreter	while	executing	the	actual	program.

Comments	are	written	using	#;	for	example:

#this	is	comment	in	my	program.	

Loops	(for,	while,	if,	and	if...else)
Loops	are	instructions	for	automating	a	multistep	process	by	organizing	sequences	of	actions	by	grouping
the	parts	which	need	to	be	repeated.	All	the	programming	languages	come	up	with	built-in	constructs,
which	allow	the	repetition	of	instructions	or	blocks	of	instructions.	In	programming	languages,	there	are
two	types	of	loops.

Decision-making	is	one	of	the	significant	components	of	programming	languages.	This	can	be	achieved	in
R	programming	by	using	the	conditional	statement	if...else.	The	syntax,	along	with	an	example,	is
given	here.

Let	us	first	discuss	if	and	else	conditional	statements	and	then	we	will	discuss	loops.

if	statement
Let	us	first	see	how	if	and	else	work	in	R.	The	general	syntax	for	an	if	clause	is	given	here:

if	(expression)	{	

			statement	

}	

If	an	expression	is	correct	then	the	statement	gets	executed	else	nothing	happens.	An	expression	can	be	a
logical	or	numeric	vector.	In	the	case	of	numeric	vectors,	0	is	taken	as	False	and	the	rest	are	taken	as
True,	for	example:

>x<-5	

>if(x>0)	

>+	{	

>+	print("	I	am	Positive")	

>+	}	

When	the	preceding	code	gets	executed	then	it	prints	I	am	Positive.

if...else	statement
Now	let	us	see	how	the	if	and	else	conditions	work	in	R.	Here	is	the	syntax:

if(expression){	

			statement1	

}	else	{	

			statement2	

}	

The	else	part	is	evaluated	in	case	if	the	if	part	is	False,	for	example:

>	x<--5	

>	if(x>0)	

>+	{	

>+	print("	I	am	Positive")	

>+	}else	

>+{	

>+	print("	I	am	Negative")	

>+}	

When	the	preceding	code	gets	executed,	it	prints	I	am	Negative.

for	loop
These	loops	are	executed	for	a	defined	number	of	times	and	are	controlled	by	a	counter	or	index	and
incremented	at	each	cycle.	Please	find	here	the	syntax	of	the	for	loop	construct:

for	(val	in	sequence)	{	

				statement	

}	

Here	is	an	example:

>Var	<-	c(3,6,8,9,11,16)	

>counter	<-	0	

>for	(val	in	Var)	{	

>+				if(val	%%	2	!=	0)		counter	=	counter+1	

>+}	

print(counter)	

When	the	preceding	code	gets	executed,	it	counts	the	number	of	odd	numbers	present	in	vector	c,	that	is,
3.

while	loop
while	loops	are	the	loops	which	are	set	at	onset	for	verifying	the	logical	condition.	The	logical	condition
is	tested	at	the	start	of	the	loop	construct.	Here	is	the	syntax:

while	(expression)	{	

			statement	

}	

Here,	the	expression	is	evaluated	first	and,	if	it	is	true,	the	body	of	the	for	loop	gets	executed.	Here	is	an
example:

>Var	<-	c("Hello")	

>counter	<-	4	

>while	(counter	<	7)	{	

>+			print(Var)	

>+			counter	=	counter+	1	

>+}	

Here,	first	the	expression	gets	evaluated	and,	if	it	is	true,	the	body	of	the	loop	gets	executed	and	it	keeps
executing	till	the	expression	returns	False.

apply()
apply()	is	a	function	in	R	used	for	quick	operations	on	a	matrix,	vector,	or	array	and	can	be	executed	on
rows,	columns,	and	on	both	together.	Now	let	us	try	to	find	the	sum	of	rows	of	a	matrix	using	the	apply
function.	Let	us	execute	the	following	code:

>	sample	=	matrix(c(1:10),	nrow	=	5	,	ncol	=	2)	

>	apply(sample,	1,sum)	

It	generates	the	sum	row-wise.

sapply()
sapply()	operates	over	a	set	of	data	such	as	a	list	or	vector,	and	calls	the	specified	function	for	each
item.	Let	us	execute	the	following	code	to	check	the	example:

>	sapply(1:5,	function(x)	x^3)	

It	computes	cubes	for	1	to	5.

Loop	control	statements
There	are	control	statements	that	can	change	the	normal	sequence	of	execution.	break	and	next	are	loop
control	statements,	and	we	will	briefly	discuss	these	control	statements	here.

break
break	terminates	the	loop	and	gives	control	to	the	next	following	statement	of	the	loop;	for	example:

>Vec	<-	c("Hello")	

>counter	<-	5	

>repeat	{	

>+			print(Vec)	

>+			counter	<-	counter	+	1	

>+			if(counter	>	8)	{	

>+						break	

>+			}	

>+}	

As	a	result	of	the	break	statement,	when	the	preceding	statement	gets	executed,	it	prints	Hello	four	times
and	then	leaves	the	loop.	repeat	is	another	loop	construct	that	keeps	executing	unless	a	stop	condition	is
specified.

next
next	does	not	terminate	the	loop,	but	skips	the	current	iteration	of	the	flow	and	goes	to	the	next	iteration.
See	the	following	example:

>Vec	<-	c(2,3,4,5,6)	

>for	(i	in	Vec)	{	

>+			if	(i	==	4)	{	

>+						next	

>+			}	

>+			print(i)	

>+}	

In	the	preceding	example,	when	the	iteration	goes	to	the	third	element	of	vector	Vec,	then	the	control	skips
the	current	iteration	and	goes	back	to	the	next	iteration.	So,	when	the	preceding	statement	gets	executed,	it
prints	vector	elements	2,	3,	5,	and	6,	and	skips	4.

Questions
1.	 What	are	the	various	atomic	objects	of	R?
2.	 What	is	a	vector	in	R?
3.	 What	is	the	difference	between	a	vector	and	a	list?
4.	 What	is	the	difference	between	arrays	and	matrices?
5.	 What	is	a	DataFrame	and	what	is	its	significance	in	R?
6.	 How	do	you	read	and	write	CSV	and	XLSX	files	in	R?
7.	 How	do	you	read	and	write	stock-market	data	in	R?
8.	 Explain	the	process	of	connecting	R	with	any	relational	database.
9.	 What	is	a	function	and	what	is	its	significance	in	R?
10.	 What	is	an	assignment	operator	in	R?
11.	 How	do	you	call	a	function	in	R?
12.	 How	do	you	source	a	script	in	R?
13.	 What	is	the	difference	between	for	and	while	loops	in	R?

Summary
Now	let	us	recap	what	we	have	learned	so	far	in	this	chapter:

How	it	is	very	important	for	analysts	pursuing	their	career	in	financial	analytics	to	learn	R
Installation	of	R	and	its	packages
The	basic	objects	in	R	are	character,	numeric,	integer,	complex,	and	logical
Commonly	used	data	types	in	R	are	lists,	matrices,	arrays,	factors,	and	DataFrames
Reading	files	from	external	data	files	such	as	CSV	and	XLSX,	and	particularly	from	online	sources
and	databases	in	R
Writing	files	to	CSV	and	XLSX	from	R
Writing	different	types	of	expression,	such	as	constant,	arithmetic,	logical,	symbols,	assignments,	and
so	on
Write	user-defined	functions
Ways	of	calling	of	user	defined	functions	and	inbuilt	functions
Running	R	programs	from	the	console	window	and	by	sourcing	saved	files
The	use	of	conditional	decision-making	by	using	if	and	else	statements
The	use	of	loops	such	as	for	and	while

Chapter	2.	Statistical	Modeling
In	this	chapter,	we	are	going	to	discuss	statistical	modeling,	which	will	be	the	first	step	in	learning
quantitative	finance	in	R	as	the	concepts	of	statistical	modeling	are	the	driving	force	for	quantitative
finance.	Before	starting	this	chapter,	the	assumption	is	that	learners	are	familiar	with	basic	programming
in	R	and	have	a	sound	knowledge	of	statistical	concepts.	We	will	not	be	discussing	statistical	concepts	in
this	chapter.	We	will	be	discussing	how	to	do	the	statistical	modeling	in	R.

This	chapter	covers	the	following	topics:

Probability	distributions
Sampling
Statistics
Correlation
Hypothesis	testing
Parameter	estimation
Outlier	detection
Standardization
Normalization

Probability	distributions
Probability	distributions	determine	how	the	values	of	random	variables	are	spread.	For	example,	the	set
of	all	the	possible	outcomes	of	the	tossing	of	a	sequence	of	coins	gives	rise	to	binomial	distribution.	The
means	of	large	samples	of	the	data	population	follow	normal	distribution,	which	is	the	most	common	and
useful	distribution.

The	features	of	these	distributions	are	very	well	known	and	can	be	used	to	extract	inferences	about	the
population.	We	are	going	to	discuss	in	this	chapter	some	of	the	most	common	probability	distributions	and
how	to	compute	them.

Normal	distribution
Normal	distribution	is	the	most	widely	used	probability	distribution	in	the	financial	industry.	It	is	a	bell-

shaped	curve	and	mean,	median	mode	is	the	same	for	normal	distribution.	It	is	denoted	by	

where	 	is	the	mean	and	 	is	the	variance	of	the	sample.	If	the	mean	is	0	and	variance	is	1	then	the
normal	distribution	is	known	as	standard	normal	distribution	N(1,	0).

Now	let	us	discuss	the	main	functions	to	compute	the	important	features	associated	with	normal
distribution.	Please	note	we	will	be	using	the	dataset	DataChap2.csv	for	all	the	calculations	in	this
chapter.	A	sample	is	displayed	in	the	following	table.	Let	the	imported	dataset	in	R	be	Sampledata.

In	the	given	sample,	Date	is	the	time	when	the	data	has	been	captured.	Open,	High,	Low,	and	Close	are
the	the	opening,	highest,	lowest,	and	closing	price	of	the	day,	respectively.	Adj.Close	is	the	adjusted
prices	of	the	day	and	return	is	the	return	calculated	using	the	Adj.Close	price	of	today	and	yesterday.
Flag	and	Sentiments	are	the	dummy	variables	created	for	the	purpose	of	analysis:

Date Open High Low Close Volume Adj.Close Return Flag Sentiments

12/14/2016 198.74 203 196.76 198.69 4144600 198.69 0 1 Good

12/13/2016 193.18 201.28 193 198.15 6816100 198.15 0.03 1 Bad

12/12/2016 192.8 194.42 191.18 192.43 615800 192.43 0 1 Good

12/9/2016 190.87 193.84 190.81 192.18 2719600 192.18 0 0 Bad

12/8/2016 192.05 192.5 189.54 192.29 3187300 192.29 0 0 Good

norm

norm	returns	the	height	of	the	normal	distribution	and	the	function	is	defined	by	the	following:

dnorm(x,	mean,	sd)	

Here,	x	is	the	vector	of	numbers	and	sd	is	the	standard	deviation.

When	we	execute	the	following	code,	it	generates	the	given	plot	showing	the	height	of	all	the	points:

>	y	<-	dnorm(Sampledata$Return,	mean	=	mean(Sampledata$Return),	sd	

=sd(Sampledata$Return,	na.rm	=	FALSE))

>	plot(Sampledata$Return,y)	

The	graphical	representation	is	as	follows:

	

	

	

Figure	2.1:	Plot	showing	height	of	normal	distribution

pnorm

pnorm	is	known	as	the	cumulative	distribution	function	and	it	gives	the	probability	of	a	random	variable
less	than	a	given	value	of	a	random	variable	and	is	given	by	the	following:

pnorm(x,	mean,	sd)	

We	execute	the	following	code:

>		pnorm(.02,	mean	=	mean(Sampledata$Return),	sd	=	sd(Sampledata$Return,	na.rm	=	

FALSE))	

This	yields	0.159837	and	can	be	interpreted	as	there	is	a	16%	probability	of	getting	a	return	greater	than
2%.

qnorm

qnorm	takes	the	probability	value	and	returns	a	number	for	which	the	cumulative	value	matches	the
probability	and	the	function	is	defined	as	follows:

qnorm(x,	mean,	sd)		

Here,	x	is	the	probability	value.

We	execute	the	following	code:

>	qnorm(0.159837,	mean	=	mean(Sampledata$Return),	sd	=	+sd(Sampledata$Return,	na.rm	

=	FALSE),lower.tail=FALSE)	

This	gives	the	output	0.02,	which	means	that	for	the	return	of	greater	than	equal	2%	the	probability	is
16%.

rnorm

rnorm	is	used	to	generate	the	random	number	whose	distribution	is	normal.	It	is	given	by	the	following:

qnorm(x,	mean,	sd)	

Here,	x	is	the	number	of	random	variables	to	be	generated.

If	we	run	the	following	code,	it	will	generate	five	random	values	with	the	mean	and	standard	deviation	of
the	return:

>rnorm(5,	mean	=	mean(Sampledata$Return),	sd	=	+sd(Sampledata$Return,	na.rm	=	

FALSE))	

When	this	code	gets	executed,	it	generates	five	normal	random	variables	with	the	specified	mean	and
standard	deviation.

Lognormal	distribution
In	a	financial	time	series,	the	lognormal	distribution	plays	a	more	critical	role	than	normal	distribution.
Just	like	normal	distribution,	we	will	be	discussing	the	same	features	for	lognormal	distribution.

dlnorm

dlnorm	is	used	to	find	the	density	function	of	the	lognormal	distribution.	The	general	syntax	for	computing
the	density	function	is	given	by	the	following:

dlnorm(x,	meanlog,	sdlog)	

Let	us	find	the	density	function	of	the	volume	of	the	sample	data,	which	can	be	done	by	executing	the
following	code:

>	y	<-	dlnorm(Sampledata$Volume,	meanlog	=	mean(Sampledata$Volume),	sdlog=	

sd(Sampledata$Volume,	na.rm	=	FALSE))>	plot(Sampledata$Volume,y)	

The	graphical	representation	is	as	follows:

	

	

	

Figure	2.2:	Plot	showing	density	function	of	lognormal	distribution

plnorm

plnorm	gives	the	cumulative	probability	distribution	function	of	lognormal	distribution.	The	general
syntax	is	given	here:

>dlnorm(x,	meanlog,	sdlog)	

Now	let	us	find	the	cdf	for	volume,	which	is	given	by	the	following	code:

>	y	<-	plnorm(Sampledata$Volume,	meanlog	=	mean(Sampledata$Volume),	sdlog=	

sd(Sampledata$Volume,	na.r=FALSE))>	plot(Sampledata$Volume,y)	

This	gives	the	cdf	plot	as	shown	here:

	

	

	

Figure	2.3:	Plot	showing	cumulative	distribution	function	of	lognormal	distribution

qlnorm

qlnorm	is	used	to	generate	p	quantiles	of	the	lognormal	distribution,	which	can	be	done	by	using	the
following	syntax:

qlnorm(p,	mean,	standard	deviation)	

rlnorm

rlnorm	generates	a	dataset	with	a	given	mean	and	standard	deviation.	The	syntax	is	as	follows:

rlnorm((n,	mean	,	standard	dev)	

Poisson	distribution
Poisson	distribution	is	the	probability	distribution	of	the	occurrence	of	independent	events	in	an	interval.

If	 	is	the	mean	occurrence	per	interval,	then	the	probability	of	having	x	occurrences	within	a	given
interval	is	given	by	the	following:

	

	

	

Here,	x	=	0,	1,	2,	3.....

If	there	are,	on	average,	10	stocks	whose	return	per	minute	is	getting	positive,	we	can	find	the	probability
of	having	15	stocks	whose	returns	are	getting	positive	in	a	particular	minute	by	using	the	following	code:

>ppois(15,	lambda=10)	

This	gives	the	output	value	0.9512596.

Hence	the	lower	tail	probability	of	getting	returns	of	15	stocks	positive	is	0.95.

Similarly,	we	can	find	the	upper	tail	probability	by	executing	the	following	code:

>ppois(15,	lambda=10,	lower=FALSE)	

Uniform	distribution
Continuous	uniform	distribution	is	the	probability	distribution	of	a	random	number	selection	from	the
continuous	interval	between	a	and	b.	Its	density	function	is	given	as	follows:

F(x)	=	1/(b-a)

Here	 	and

	

	

	

Now	let	us	generate	10	random	numbers	between	1	and	5.	It	can	be	given	by	executing	the	following
code:

>runif(10,	min=1,	max=5)	

This	generates	the	following	output:

3.589514	2.979528	3.454022	2.731393	4.416726	1.560019	4.592588	1.500221	4.067229	

3.515988.	

Extreme	value	theory
Most	of	the	commonly	known	statistical	distributions	are	focused	on	the	center	of	distributions	and	do	not
bother	about	the	tails	of	distributions,	which	contain	the	extreme/outlier	values.	One	of	the	toughest
challenges	for	a	risk	manager	is	to	develop	risk	models	which	can	take	care	of	rare	and	extreme	events.
Extreme	value	theory	(EVT)	attempts	to	provide	the	best	possible	estimate	of	the	tail	area	of	a
distribution.

There	are	two	types	of	models	for	estimating	extreme	values,	that	is,	block	maxima	models	fitted	with	the
generalized	extreme	value	(GEV)	distribution	and	peaks	over	threshold	(POT)	models	fitted	with	the
generalized	Pareto	distribution	(GPD).	Generally,	POT	is	used	these	days	so	we	will	be	giving	an
example	of	POT	in	this	chapter.	Let	us	use	a	subset	of	the	dataset	available	in	the	POT	package	as	an
example.

To	find	the	tail	distribution,	first	we	need	to	find	a	threshold	point,	which	can	be	done	by	executing	the
following	code:

>	data(ardieres)	

>	abc<-ardieres[1:10000,]	

>	events	<-	clust(abc,	u	=	1.5,	tim.cond	=	8/365,	clust.max	=	TRUE)	

>	par(mfrow	=	c(2,	2))	

>	mrlplot(events[,	"obs"])	

>	diplot(events)	

>	tcplot(events[,	"obs"],	which	=	1)	

>	tcplot(events[,	"obs"],	which	=	2)	

This	gives	the	following	plot:

	

	

	

Figure	2.4:	Analysis	for	threshold	selection	for	EVT

After	analyzing	these	plots,	the	threshold	point	can	be	set	and	the	parameters	of	GPD	models	can	be
estimated.	This	is	done	by	executing	the	following	code:

>obs	<-	events[,"obs"]	

>ModelFit	<-	fitgpd(obs,	thresh	=	5,	"pwmu")	

>ModelFit	

This	gives	the	parameter	estimates	of	the	GPD	model:

	

	

	

Figure	2.5:	Parameter	estimates	of	GPD	model	for	EVT

Sampling
When	building	any	model	in	finance,	we	may	have	very	large	datasets	on	which	model	building	will	be
very	time-consuming.	Once	the	model	is	built,	if	we	need	to	tweak	the	model	again,	it	is	going	to	be	a
time-consuming	process	because	of	the	volume	of	data.	So	it	is	better	to	get	the	random	or	proportionate
sample	of	the	population	data	on	which	model	building	will	be	easier	and	less	time-consuming.	So	in	this
section,	we	are	going	to	discuss	how	to	select	a	random	sample	and	a	stratified	sample	from	the	data.
This	will	play	a	critical	role	in	building	the	model	on	sample	data	drawn	from	the	population	data.

Random	sampling
Select	the	sample	where	all	the	observation	in	the	population	has	an	equal	chance.	It	can	be	done	in	two
ways,	one	without	replacement	and	the	other	with	replacement.

A	random	sample	without	replacement	can	be	done	by	executing	the	following	code:

>	RandomSample	<-	Sampledata[sample(1:nrow(Sampledata),	10,		

>+	replace=FALSE),]	

This	generates	the	following	output:

	

Figure	2.6:	Table	shows	random	sample	without	replacement

A	random	sample	with	replacement	can	be	done	by	executing	the	following	code.	Replacement	means	that
an	observation	can	be	drawn	more	than	once.	So	if	a	particular	observation	is	selected,	it	is	again	put	into
the	population	and	it	can	be	selected	again:

>	RandomSample	<-	Sampledata[sample(1:nrow(Sampledata),	10,		

>+	replace=TRUE),]	

This	generates	the	following	output:

	

Figure	2.7:	Table	showing	random	sampling	with	replacement

Stratified	sampling
In	stratified	sampling,	we	divide	the	population	into	separate	groups,	called	strata.	Then,	a	probability
sample	(often	a	simple	random	sample)	is	drawn	from	each	group.	Stratified	sampling	has	several
advantages	over	simple	random	sampling.	With	stratified	sampling,	it	is	possible	to	reduce	the	sample
size	in	order	to	get	better	precision.

Now	let	us	see	how	many	groups	exist	by	using	Flag	and	Sentiments	as	given	in	the	following	code:

>library(sampling)	

>table(Sampledata$Flag,Sampledata$Sentiments)

The	output	is	as	follows:

	

Figure	2.8:	Table	showing	the	frequencies	across	different	groups

Now	you	can	select	the	sample	from	the	different	groups	according	to	your	requirement:

>Stratsubset=strata(Sampledata,c("Flag","Sentiments"),size=c(6,5,	>+4,3),	

method="srswor")	

>	Stratsubset	

The	output	is	as	follows:

	

Figure	2.9:	Table	showing	output	for	stratified	sampling

Statistics
In	a	given	dataset,	we	try	to	summarize	the	data	by	the	central	position	of	the	data,	which	is	known	as
measure	of	central	tendency	or	summary	statistics.	There	are	several	ways	to	measure	the	central
tendency,	such	as	mean,	median,	and	mode.	Mean	is	the	widely	used	measure	of	central	tendency.	Under
different	scenarios,	we	use	different	measures	of	central	tendency.	Now	we	are	going	to	give	an	example
of	how	to	compute	the	different	measures	of	central	tendency	in	R.

Mean
mean	is	the	equal	weightage	average	of	the	sample.	For	example,	we	can	compute	the	mean	of	Volume	in
the	dataset	Sampledata	by	executing	the	following	code,	which	gives	the	arithmetic	mean	of	the	volume:

mean(Sampledata$Volume)	

Median
Median	is	the	mid	value	of	the	matrix	when	it	is	arranged	in	a	sorted	way,	which	can	be	computed	by
executing	the	following	code:

median(Sampledata$Volume)	

Mode
Mode	is	the	value	present	in	the	attribute	which	has	maximum	frequency.	For	mode,	there	does	not	exist
an	inbuilt	function	so	we	will	write	a	function	to	compute	mode:

findmode	<-	function(x)	{	

			uniqx	<-	unique(x)	

			uniqx[which.max(tabulate(match(x,	uniqx)))]	

}	

findmode(Sampledata$return)	

Executing	the	preceding	code	gives	the	mode	of	the	return	attribute	of	the	dataset.

Summary
We	can	also	generate	basic	statistics	of	a	column	by	executing	the	following	code:

summary(Sampledata$Volume)	

This	generates	the	mean,	median,	minimum,	maximum,	Q1,	and	Q2	quartiles.

Moment
Moment	gives	the	characteristics	such	as	variance,	skewness,	and	so	on	of	the	population,	which	is
computed	by	the	following	code.	The	code	gives	the	third	order	moment	of	the	attribute	Volume.	Once	can
change	the	order	to	get	the	relevant	characteristics.	However	before	that,	we	need	to	install	package
e1071:

moment(Sampledata$Volume,	order=3,	center=TRUE)	

Kurtosis
Kurtosis	measures	whether	the	data	is	heavy-tailed	or	light-tailed	relative	to	a	normal	distribution.
Datasets	with	high	kurtosis	tend	to	have	heavy	tails,	or	outliers.	Datasets	with	low	kurtosis	tend	to	have
light	tails,	and	fewer	outliers.	The	computed	value	of	kurtosis	is	compared	with	the	kurtosis	of	normal
distribution	and	the	interpretation	is	made	on	the	basis	of	that.

The	kurtosis	of	Volume	is	given	by	the	following	code:

kurtosis(Sampledata$Volume)	

It	gives	value	5.777117,	which	shows	the	distribution	of	volume	as	leptokurtic.

Skewness
Skewness	is	the	measure	of	symmetry	of	the	distribution.	If	the	mean	of	data	values	is	less	than	the	median
then	the	distribution	is	said	to	be	left-skewed	and	if	the	mean	of	the	data	values	is	greater	than	the	median,
then	the	distribution	is	said	to	be	right-skewed.

The	skewness	of	Volume	is	computed	as	follows	in	R:

skewness(Sampledata$Volume)	

This	gives	the	result	1.723744,	which	means	it	is	right-skewed.

Note

For	computing	skewness	and	kurtosis,	we	need	to	install	the	package	e1071.

Correlation
Correlation	plays	a	very	important	role	in	quant	finance.	It	not	only	determines	the	relation	between	the
financial	attributes	but	also	plays	a	crucial	role	in	predicting	the	future	of	financial	instruments.
Correlation	is	the	measure	of	linear	relationship	between	the	two	financial	attributes.	Now	let	us	try	to
compute	the	different	types	of	correlation	in	R	using	Sampledata,	which	is	used	in	identifying	the	orders
of	components	of	predictive	financial	models.

Correlation	can	be	computed	by	the	following	code.	Let's	first	subset	the	data	and	then	run	the	function	for
getting	correlation:

x<-Sampledata[,2:5]	

rcorr(x,	type="pearson")	

This	generates	the	following	correlation	matrix,	which	shows	the	measure	of	linear	relationship	between
the	various	daily	level	prices	of	a	stock:

Open High Low Close

Open 1 0.962062 0.934174 0.878553

High 0.962062 1 0.952676 0.945434

Low 0.934174 0.952676 1 0.960428

Close 0.878553 0.945434 0.960428 1

Autocorrelation
Autocorrelation	is	the	correlation	of	the	series	with	its	past	or	future	values.	It	is	also	known	as	serial
correlation	and	lagged	correlation.	It	plays	a	critical	role	in	time	series	prediction	modeling.	The	function
acf	computes	estimates	of	the	autocorrelation	function.

The	following	code	when	executed	gives	the	autocorrelation	of	the	series	with	its	lagged	values:

acf(Sampledata$Volume)	

The	graph	is	as	follows:

	

	

	

Figure	2.10:	Plot	showing	autocorrelation	of	series	with	its	lag

This	gives	the	plot	of	autocorrelations	of	the	series	with	its	lagged	values.	There	are	other	options	in
functions	such	as	lag.max,	plot,	and	so	on.

Partial	autocorrelation
Partial	autocorrelation	of	a	time	series	is	the	correlation	with	its	own	lagged	values,	controlling	for	the
values	of	the	time	series	at	all	shorter	lags.	It	is	also	used	in	time	series	modeling	for	identifying	the
orders	of	the	components	of	forecasting	techniques.	It	is	computed	by	using	the	following	code:

pacf(Sampledata$Volume)	

It	also	contains	other	options	such	as	how	many	lags	you	want	to	use	and	plot.	The	preceding	code	gives
the	following	plot:

	

	

	

Figure	2.11:	Plot	showing	partial	autocorrelation	of	series	with	its	lag

Cross-correlation
Cross-correlation	is	a	measure	of	the	similarity	of	two	series	as	a	function	of	the	displacement	of	one
relative	to	the	other.	Just	like	acf	and	pacf,	it	also	plays	a	crucial	role	in	time	series	forecasting.	It	can
be	computed	by	using	the	following	function:

ccf(Sampledata$Volume,Sampledata$High,	main	=	"ccf	plot")	

When	the	preceding	code	gets	executed,	it	generates	the	following	plot:

	

	

	

Figure	2.12:	Plot	showing	cross-correlation	of	two	series

Hypothesis	testing
Hypothesis	testing	is	used	to	reject	or	retain	a	hypothesis	based	upon	the	measurement	of	an	observed
sample.	We	will	not	be	going	into	theoretical	aspects	but	will	be	discussing	how	to	implement	the	various
scenarios	of	hypothesis	testing	in	R.

Lower	tail	test	of	population	mean	with	known	variance

The	null	hypothesis	is	given	by	 	where	 	is	the	hypothesized	lower	bound	of	the	population
mean.

Let	us	assume	a	scenario	where	an	investor	assumes	that	the	mean	of	daily	returns	of	a	stock	since
inception	is	greater	than	$10.	The	average	of	30	days'	daily	return	sample	is	$9.9.	Assume	the	population
standard	deviation	is	0.011.	Can	we	reject	the	null	hypothesis	at	.05	significance	level?

Now	let	us	calculate	the	test	statistics	z	which	can	be	computed	by	the	following	code	in	R:

>	xbar=	9.9											

>	mu0	=	10												

>	sig	=	1.1												

>	n	=	30																		

>	z	=	(xbar-mu0)/(sig/sqrt(n))		

>	z		

Here:

xbar:	Sample	mean
mu:	Hypothesized	value
sig:	Standard	deviation	of	population
n:	Sample	size
z:	Test	statistics

This	gives	the	value	of	z	the	test	statistics:

[1]	-0.4979296	

Now	let	us	find	out	the	critical	value	at	0.05	significance	level.	It	can	be	computed	by	the	following
code:

>	alpha	=	.05		

>	z.alpha	=	qnorm(1-alpha)		

>	-z.alpha			

This	gives	the	following	output:

[1]	-1.644854	

Since	the	value	of	the	test	statistics	is	greater	than	the	critical	value,	we	fail	to	reject	the	null	hypothesis
claim	that	the	return	is	greater	than	$10.

In	place	of	using	the	critical	value	test,	we	can	use	the	pnorm	function	to	compute	the	lower	tail	of	Pvalue
test	statistics.	This	can	be	computed	by	the	following	code:

>	pnorm(z)	

This	gives	the	following	output:

[1]	0.3092668	

Since	the	Pvalue	is	greater	than	0.05,	we	fail	to	reject	the	null	hypothesis.

Upper	tail	test	of	population	mean	with	known	variance

The	null	hypothesis	is	given	by	 	where	 	is	the	hypothesized	upper	bound	of	the	population
mean.

Let	us	assume	a	scenario	where	an	investor	assumes	that	the	mean	of	daily	returns	of	a	stock	since
inception	is	at	most	$5.	The	average	of	30	days'	daily	return	sample	is	$5.1.	Assume	the	population
standard	deviation	is	0.25.	Can	we	reject	the	null	hypothesis	at	.05	significance	level?

Now	let	us	calculate	the	test	statistics	z,	which	can	be	computed	by	the	following	code	in	R:

>	xbar=	5.1											

>	mu0	=	5												

>	sig	=	.25												

>	n	=	30																		

>	z	=	(xbar-mu0)/(sig/sqrt(n))		

>	z	

Here:

xbar:	Sample	mean
mu0:	Hypothesized	value
sig:	Standard	deviation	of	population
n:	Sample	size
z:	Test	statistics

It	gives	2.19089	as	the	value	of	test	statistics.	Now	let	us	calculate	the	critical	value	at	.05	significance
level,	which	is	given	by	the	following	code:

>	alpha	=	.05		

>	z.alpha	=	qnorm(1-alpha)		

>	z.alpha	

This	gives	1.644854,	which	is	less	than	the	value	computed	for	the	test	statistics.	Hence	we	reject	the
null	hypothesis	claim.

Also,	the	Pvalue	of	the	test	statistics	is	given	as	follows:

>pnorm(z,	lower.tail=FALSE)	

This	gives	0.01422987,	which	is	less	than	0.05	and	hence	we	reject	the	null	hypothesis.

Two-tailed	test	of	population	mean	with	known	variance

The	null	hypothesis	is	given	by	 	where	 	is	the	hypothesized	value	of	the	population	mean.

Let	us	assume	a	scenario	where	the	mean	of	daily	returns	of	a	stock	last	year	is	$2.	The	average	of	30
days'	daily	return	sample	is	$1.5	this	year.	Assume	the	population	standard	deviation	is	.2.	Can	we	reject
the	null	hypothesis	that	there	is	not	much	significant	difference	in	returns	this	year	from	last	year	at	.05
significance	level?

Now	let	us	calculate	the	test	statistics	z,	which	can	be	computed	by	the	following	code	in	R:

>	xbar=	1.5										

>	mu0	=	2											

>	sig	=	.1											

>	n	=	30																		

>	z	=	(xbar-mu0)/(sig/sqrt(n))		

>	z		

This	gives	the	value	of	test	statistics	as	-27.38613.

Now	let	us	try	to	find	the	critical	value	for	comparing	the	test	statistics	at	.05	significance	level.	This	is
given	by	the	following	code:

>alpha	=	.05		

>z.half.alpha	=	qnorm(1-alpha/2)		

>c(-z.half.alpha,	z.half.alpha)	

This	gives	the	value	-1.959964,	1.959964.	Since	the	value	of	test	statistics	is	not	between	the	range
(-1.959964,	1.959964),	we	reject	the	claim	of	the	null	hypothesis	that	there	is	not	much	significant
difference	in	returns	this	year	from	last	year	at	.05	significance	level.

The	two-tailed	Pvalue	statistics	is	given	as	follows:

>2*pnorm(z)	

This	gives	a	value	less	than	.05	so	we	reject	the	null	hypothesis.

In	all	the	preceding	scenarios,	the	variance	is	known	for	population	and	we	use	the	normal	distribution	for
hypothesis	testing.	However,	in	the	next	scenarios,	we	will	not	be	given	the	variance	of	the	population	so
we	will	be	using	t	distribution	for	testing	the	hypothesis.

Lower	tail	test	of	population	mean	with	unknown	variance

The	null	hypothesis	is	given	by	 	where	 	is	the	hypothesized	lower	bound	of	the	population
mean.

Let	us	assume	a	scenario	where	an	investor	assumes	that	the	mean	of	daily	returns	of	a	stock	since
inception	is	greater	than	$1.	The	average	of	30	days'	daily	return	sample	is	$.9.	Assume	the	population
standard	deviation	is	0.01.	Can	we	reject	the	null	hypothesis	at	.05	significance	level?

In	this	scenario,	we	can	compute	the	test	statistics	by	executing	the	following	code:

>	xbar=	.9										

>	mu0	=	1										

>	sig	=	.1											

>	n	=	30																		

>	t	=	(xbar-mu0)/(sig/sqrt(n))		

>	t		

Here:

xbar:	Sample	mean
mu0:	Hypothesized	value
sig:	Standard	deviation	of	sample
n:	Sample	size
t:	Test	statistics

This	gives	the	value	of	the	test	statistics	as	-5.477226.	Now	let	us	compute	the	critical	value	at	.05
significance	level.	This	is	given	by	the	following	code:

>	alpha	=	.05		

>	t.alpha	=	qt(1-alpha,	df=n-1)		

>	-t.alpha	

We	get	the	value	as	-1.699127.	Since	the	value	of	the	test	statistics	is	less	than	the	critical	value,	we
reject	the	null	hypothesis	claim.

Now	instead	of	the	value	of	the	test	statistics,	we	can	use	the	Pvalue	associated	with	the	test	statistics,
which	is	given	as	follows:

>pt(t,	df=n-1)	

This	results	in	a	value	less	than	.05	so	we	can	reject	the	null	hypothesis	claim.

Upper	tail	test	of	population	mean	with	unknown	variance

The	null	hypothesis	is	given	by	 where	 	is	the	hypothesized	upper	bound	of	the	population
mean.

Let	us	assume	a	scenario	where	an	investor	assumes	that	the	mean	of	daily	returns	of	a	stock	since
inception	is	at	most	$3.	The	average	of	30	days'	daily	return	sample	is	$3.1.	Assume	the	population
standard	deviation	is	.2.	Can	we	reject	the	null	hypothesis	at	.05	significance	level?

Now	let	us	calculate	the	test	statistics	t	which	can	be	computed	by	the	following	code	in	R:

>	xbar=	3.1										

>	mu0	=	3									

>	sig	=	.2											

>	n	=	30																		

>	t	=	(xbar-mu0)/(sig/sqrt(n))		

>	t			

Here:

xbar:	Sample	mean
mu0:	Hypothesized	value
sig:	Standard	deviation	of	sample
n:	Sample	size
t:	Test	statistics

This	gives	the	value	2.738613	of	the	test	statistics.	Now	let	us	find	the	critical	value	associated	with	the
.05	significance	level	for	the	test	statistics.	It	is	given	by	the	following	code:

>	alpha	=	.05		

>	t.alpha	=	qt(1-alpha,	df=n-1)		

>	t.alpha	

Since	the	critical	value	1.699127	is	less	than	the	value	of	the	test	statistics,	we	reject	the	null	hypothesis
claim.

Also,	the	value	associated	with	the	test	statistics	is	given	as	follows:

>pt(t,	df=n-1,	lower.tail=FALSE)	

This	is	less	than	.05.	Hence	the	null	hypothesis	claim	gets	rejected.

Two	tailed	test	of	population	mean	with	unknown	variance

The	null	hypothesis	is	given	by	 ,	where	 	is	the	hypothesized	value	of	the	population	mean.

Let	us	assume	a	scenario	where	the	mean	of	daily	returns	of	a	stock	last	year	is	$2.	The	average	of	30
days'	daily	return	sample	is	$1.9	this	year.	Assume	the	population	standard	deviation	is	.1.	Can	we	reject
the	null	hypothesis	that	there	is	not	much	significant	difference	in	returns	this	year	from	last	year	at	.05
significance	level?

Now	let	us	calculate	the	test	statistics	t,	which	can	be	computed	by	the	following	code	in	R:

>	xbar=	1.9									

>	mu0	=	2									

>	sig	=	.1											

>	n	=	30																		

>	t	=	(xbar-mu0)/(sig/sqrt(n))		

>	t		

This	gives	-5.477226	as	the	value	of	the	test	statistics.	Now	let	us	try	to	find	the	critical	value	range	for
comparing,	which	is	given	by	the	following	code:

>	alpha	=	.05		

>	t.half.alpha	=	qt(1-alpha/2,	df=n-1)		

>	c(-t.half.alpha,	t.half.alpha)	

This	gives	the	range	value	(-2.04523,	2.04523).	Since	this	is	the	value	of	the	test	statistics,	we	reject	the
claim	of	the	null	hypothesis.

Parameter	estimates
In	this	section,	we	are	going	to	discuss	some	of	the	algorithms	used	for	parameter	estimation.

Maximum	likelihood	estimation
Maximum	likelihood	estimation	(MLE)	is	a	method	for	estimating	model	parameters	on	a	given	dataset.

Now	let	us	try	to	find	the	parameter	estimates	of	a	probability	density	function	of	normal	distribution.

Let	us	first	generate	a	series	of	random	variables,	which	can	be	done	by	executing	the	following	code:

>	set.seed(100)	

>	NO_values	<-	100	

>	Y	<-	rnorm(NO_values,	mean	=	5,	sd	=	1)	

>	mean(Y)	

This	gives	5.002913.

>	sd(Y)	

This	gives	1.02071.

Now	let	us	make	a	function	for	log	likelihood:

LogL	<-	function(mu,	sigma)	{	

+						A	=	dnorm(Y,	mu,	sigma)	

+						-sum(log(A))	

+		}	

Now	let	us	apply	the	function	mle	to	estimate	the	parameters	for	estimating	mean	and	standard	deviation:

>	library(stats4)	

>	mle(LogL,	start	=	list(mu	=	2,	sigma=2))	

mu	and	sigma	have	been	given	initial	values.

This	gives	the	output	as	follows:

	

	

	

Figure	2.13:	Output	for	MLE	estimation

NaNs	are	produced	when	negative	values	are	attempted	for	the	standard	deviation.

This	can	be	controlled	by	giving	relevant	options,	as	shown	here.	This	ignores	the	warning	messages
produced	in	the	output	displayed	in	Figure	2.13:

>	mle(LogL,	start	=	list(mu	=	2,	sigma=2),	method	=	"L-BFGS-B",	

+		lower	=	c(-Inf,	0),	

+							upper	=	c(Inf,	Inf))	

This,	upon	execution,	gives	the	best	possible	fit,	as	shown	here:

	

	

	

Figure	2.14:	Revised	output	for	MLE	estimation

Linear	model
In	the	linear	regression	model,	we	try	to	predict	dependent/response	variables	in	terms	of
independent/predictor	variables.	In	the	linear	model,	we	try	to	fit	the	best	possible	line,	known	as	the
regression	line,	though	the	given	points.	The	coefficients	for	the	regression	lines	are	estimated	using
statistical	software.	An	intercept	in	the	regression	line	represents	the	mean	value	of	the	dependent
variable	when	the	predictor	variable	takes	the	value	as	zero.	Also	the	response	variable	increases	by	the
factor	of	estimated	coefficients	for	each	unit	change	in	the	predictor	variable.	Now	let	us	try	to	estimate
parameters	for	the	linear	regression	model	where	the	dependent	variable	is	Adj.Close	and	independent
variable	is	Volume	of	Sampledata.	Then	we	can	fit	the	linear	model	as	follows:

>	Y<-Sampledata$Adj.Close	

>	X<-Sampledata$Volume	

>	fit	<-	lm(Y	~	X)	

>	summary(fit)	

Upon	executing	the	preceding	code,	the	output	is	generated	as	given	here:

	

	

	

Figure	2.15:	Output	for	linear	model	estimation

The	summary	display	shows	the	parameter	estimates	of	the	linear	regression	model.	Similarly,	we	can
estimate	parameters	for	other	regression	models	such	as	multiple	or	other	forms	of	regression	models.

Outlier	detection
Outliers	are	very	important	to	be	taken	into	consideration	for	any	analysis	as	they	can	make	analysis
biased.	There	are	various	ways	to	detect	outliers	in	R	and	the	most	common	one	will	be	discussed	in	this
section.

Boxplot
Let	us	construct	a	boxplot	for	the	variable	volume	of	the	Sampledata,	which	can	be	done	by	executing
the	following	code:

>	boxplot(Sampledata$Volume,	main="Volume",	boxwex=0.1)	

The	graph	is	as	follows:

	

	

	

Figure	2.16:	Boxplot	for	outlier	detection

An	outlier	is	an	observation	which	is	distant	from	the	rest	of	the	data.	When	reviewing	the	preceding
boxplot,	we	can	clearly	see	the	outliers	which	are	located	outside	the	fences	(whiskers)	of	the	boxplot.

LOF	algorithm
The	local	outlier	factor	(LOF)	is	used	for	identifying	density-based	local	outliers.	In	LOF,	the	local
density	of	a	point	is	compared	with	that	of	its	neighbors.	If	the	point	is	in	a	sparser	region	than	its
neighbors	then	it	is	treated	as	an	outlier.	Let	us	consider	some	of	the	variables	from	the	Sampledata	and
execute	the	following	code:

>	library(DMwR)	

>	Sampledata1<-	Sampledata[,2:4]	

>	outlier.scores	<-	lofactor(Sampledata1,	k=4)	

>	plot(density(outlier.scores))	

Here,	k	is	the	number	of	neighbors	used	in	the	calculation	of	the	local	outlier	factors.

The	graph	is	as	follows:

	

	

	

Figure	2.17:	Plot	showing	outliers	by	LOF	method

If	you	want	the	top	five	outliers	then	execute	the	following	code:

>	order(outlier.scores,	decreasing=T)[1:5]	

This	gives	an	output	with	the	row	numbers:

[1]	50	34	40	33	22	

Standardization
In	statistics,	standardization	plays	a	crucial	role	as	we	have	various	attributes	for	modeling	and	all	of
them	have	different	scales.	So	for	comparison	purposes,	we	need	to	standardize	the	variables	to	bring
them	on	the	same	scale.	Centering	the	values	and	creating	the	z	scores	is	done	in	R	by	the	scale()
function.	It	takes	the	following	arguments:

x:	A	numeric	object
center:	If	TRUE,	the	object's	column	means	are	subtracted	from	the	values	in	those	columns
(ignoring	NAs);	if	FALSE,	centering	is	not	performed
scale:	If	TRUE,	the	centered	column	values	are	divided	by	the	column's	standard	deviation	(when
center	is	also	TRUE;	otherwise,	the	root	mean	square	is	used);	if	FALSE,	scaling	is	not	performed

If	we	want	to	center	the	data	of	Volume	in	our	dataset,	we	just	need	to	execute	the	following	code:
>scale(Sampledata$Volume,	center=TRUE,	scale=FALSE)

If	we	want	to	standardize	the	data	of	volume	in	our	dataset,	we	just	need	to	execute	the	following	code:

>scale(Sampledata$Volume,	center=TRUE,	scale=TRUE)	

Normalization
Normalization	is	done	using	the	minmax	concept	to	bring	the	various	attributes	on	the	same	scale.	It	is
calculated	by	the	formula	given	here:	normalized	=	(x-min(x))/(max(x)-min(x))

So	if	we	want	to	normalize	the	volume	variable,	we	can	do	it	by	executing	the	following	code:	>
normalized	=	(Sampledata$Volume-+min(Sampledata$Volume))/(max(Sampledata$Volume)-
+min(Sampledata$Volume))	>	normalized

Questions
1.	 Construct	examples	of	normal,	Poisson,	and	uniform	distribution	in	R.
2.	 How	do	you	do	random	and	stratified	sampling	in	R?
3.	 What	are	the	different	measures	of	central	tendency	and	how	do	you	find	them	in	R?
4.	 How	do	you	compute	kurtosis	and	skewness	in	R?
5.	 How	do	you	do	hypothesis	testing	in	R	with	known/unknown	variance	of	population	in	R?
6.	 How	do	you	detect	outliers	in	R?
7.	 How	do	you	do	parameter	estimates	for	a	linear	model	and	MLE	in	R?
8.	 What	is	standardization	and	normalization	in	R	and	how	do	you	perform	it	in	R?

Summary
In	this	chapter,	we	have	discussed	the	most	commonly	used	distributions	in	the	finance	domain	and
associated	metrics	computations	in	R;	sampling	(random	and	stratified);	measures	of	central	tendencies;
correlations	and	types	of	correlation	used	for	model	selections	in	time	series;	hypothesis	testing	(one-
tailed/two-tailed)	with	known	and	unknown	variance;	detection	of	outliers;	parameter	estimation;	and
standardization/normalization	of	attributes	in	R	to	bring	attributes	on	comparable	scales.

In	the	next	chapter,	analysis	done	in	R	associated	with	simple	linear	regression,	multivariate	linear
regression,	ANOVA,	feature	selection,	ranking	of	variables,	wavelet	analysis,	fast	Fourier	transformation,
and	Hilbert	transformation	will	be	covered.

Chapter	3.	Econometric	and	Wavelet	Analysis
In	financial	analytics,	we	need	techniques	to	do	predictive	modeling	for	forecasting	and	finding	the
drivers	for	different	target	variables.	In	this	chapter,	we	will	discuss	types	of	regression	and	how	we	can
build	a	regression	model	in	R	for	building	predictive	models.	Also	we	will	discuss,	how	we	can
implement	a	variable	selection	method	and	other	aspects	associated	with	regression.	This	chapter	will	not
contain	theoretical	description	but	will	just	guide	you	in	how	to	implement	a	regression	model	in	R	in	the
financial	space.	Regression	analysis	can	be	used	for	doing	forecast	on	cross-sectional	data	in	the
financial	domain.	We	will	also	cover	frequency	analysis	of	the	data,	and	how	transformations	such	as	Fast
Fourier,	wavelet,	Hilbert,	haar	transformations	in	time,	and	frequency	domains	help	to	remove	noise	in
the	data.

This	chapter	covers	the	following	topics:

Simple	linear	regression
Multivariate	linear	regression
Multicollinearity
ANOVA
Feature	selection
Stepwise	variable	selection
Ranking	of	variables
Wavelet	analysis
Fast	Fourier	transformation
Hilbert	transformation

Simple	linear	regression
In	simple	linear	regression,	we	try	to	predict	one	variable	in	terms	of	a	second	variable	called	a	predictor
variable.	The	variable	we	are	trying	to	predict	is	called	the	dependent	variable	and	is	denoted	by	y,	and
the	independent	variable	is	denoted	by	x.	In	simple	linear	regression,	we	assume	a	linear	relationship
between	the	dependent	attribute	and	predictor	attribute.

First	we	need	to	plot	the	data	to	understand	the	linear	relationship	between	the	dependent	variable	and
independent	variable.	Here	our,	data	consists	of	two	variables:

YPrice:	Dependent	variable
XPrice:	Predictor	variable

In	this	case,	we	are	trying	to	predict	Yprice	in	terms	of	XPrice.	StockXprice	is	the	independent
variable	and	StockYprice	is	the	dependent	variable.	For	every	element	of	StockXprice,	there	is	an
element	of	StockYprice,	which	implies	one-to-one	mapping	between	elements	of	StockXprice	and
StockYprice.

A	few	lines	of	data	used	for	the	following	analysis	are	displayed	using	the	following	code:

>head(Data)	

StockYPrice StockXPrice

1 80.13 72.86

2 79.57 72.88

3 79.93 71.72

4 81.69 71.54

5 80.82 71

6 81.07 71.78

Scatter	plot
First	we	will	plot	scatter	plot	between	y	and	x,	to	understand	the	type	of	linear	relationship	between	x	and
y.	The	following	code,	when	executed,	gives	the	following	scatter	plot:

>	YPrice	=	Data$StockYPrice	

>	XPrice	=	Data$StockXPrice	

>	plot(YPrice,	XPrice,							xlab="XPrice",									

ylab="YPrice")	

Here,	our	dependent	variable	is	YPrice	and	predictor	variable	is	Xprice.	Please	note	this	example	is
just	for	illustration	purposes:

	

	

	

Figure	3.1:	Scatter	plot	of	two	variables

Once	we	have	examined	the	relationship	between	the	dependent	variable	and	predictor	variable,	we	try
fit	the	best	straight	line	through	the	points	which	represent	the	predicted	Y	value	for	all	the	given	predictor
variables.	A	simple	linear	regression	is	represented	by	the	following	equation	describing	the	relationship
between	the	dependent	and	predictor	variables:

	

	

	

Here	 	and	 	are	parameters	and	 	is	the	error	term.	 	is	also	known	as	the	intercept	and	 	as
the	coefficient	of	the	predictor	variable;	it	is	obtained	by	minimizing	the	sum	of	squares	of	the	error	term	

.	All	the	statistical	software	gives	the	option	of	estimating	the	coefficients	and	so	does	R.

We	can	fit	the	linear	regression	model	using	the	lm	function	in	R	as	shown	here:

>	LinearR.lm	=	lm(YPrice	~	XPrice,	data=Data)	

Here,	Data	is	the	input	data	given	and	Yprice	and	Xprice	are	the	dependent	and	predictor	variables
respectively.	Once	we	have	fitted	the	model,	we	can	extract	our	parameters	using	the	following	code:

>	coeffs	=	coefficients(LinearR.lm);	coeffs	

The	preceding	result	gives	the	value	of	the	intercept	and	coefficient:

(Intercept)						XPrice	

92.7051345		-0.1680975	

So	now	we	can	write	our	model	as	follows:

>	YPrice	=	92.7051345	+	-0.1680975*(Xprice)	

This	can	give	the	predicted	value	for	any	given	Xprice.

Also,	we	can	execute	the	following	code	to	get	the	predicted	value	using	the	fitted	linear	regression
model	on	any	other	data,	say	OutofSampleData,	by	executing	the	following	code:

>	predict(LinearR.lm,	OutofSampleData)	

Coefficient	of	determination
We	have	fitted	our	model	but	now	we	need	to	test	how	good	the	model	is	fitting	to	the	data.	There	are	a
few	measures	available	for	it	but	the	main	one	is	the	coefficient	of	determination.	This	is	given	by	the
following	code:

>	summary(LinearR.lm)$r.squared	

By	definition,	it	is	a	proportion	of	the	variance	in	the	dependent	variable	that	is	explained	by	the
independent	variable	and	is	also	known	as	R2.

Significance	test
Now,	we	need	to	examine	whether	the	relationship	between	the	variables	in	the	linear	regression	model	is
significant	or	not,	at	0.05	significance	level.

We	execute	the	following	code:

>	summary(LinearR.lm)	

It	gives	all	the	relevant	statistics	of	the	linear	regression	model	as	shown	here:

	

	

	

Figure	3.2:	Summary	of	linear	regression	model

If	the	Pvalue	associated	with	Xprice	is	less	than	0.05	then	the	predictor	is	explaining	the	dependent
variable	significantly	at	0.05	significance	level.

Confidence	interval	for	linear	regression	model
One	of	the	important	issues	for	the	predicted	value	is	to	find	the	confidence	interval	around	the	predicted
value.	So	let	us	try	to	find	a	95%	confidence	interval	around	the	predicted	value	of	the	fitted	model.	This
can	be	achieved	by	executing	the	following	code:

>	Predictdata	=	data.frame(XPrice=75)	

>	predict(LinearR.lm,	Predictdata,	interval="confidence")			

Here	we	are	estimating	the	predicted	value	for	the	given	value	of	Xprice	=	75	and	then	we	try	to	find	the
confidence	interval	around	the	predicted	value.

The	output	generated	by	executing	the	preceding	code	is	shown	in	the	following	screenshot:

	

	

	

Figure	3.3:	Prediction	of	confidence	interval	for	linear	regression	model

Residual	plot
Once	we	have	fitted	the	model	then	we	compare	it	with	the	observed	value	and	find	the	difference,	which
is	known	as	the	residual.	Then	we	plot	the	residual	against	the	predictor	variable	to	see	the	performance
of	the	model	visually.	The	following	code	can	be	executed	to	get	the	residual	plot:

>	LinearR.res	=	resid(LinearR.lm)	

>	plot(XPrice,	LinearR.res,		

ylab="Residuals",	xlab="XPrice",		

main="Residual	Plot")	

	

	

	

Figure	3.4:	Residual	plot	of	linear	regression	model

We	can	also	plot	the	residual	plot	for	the	standardized	residuals	by	just	executing	the	following	code	in
the	previously	mentioned	code:

>	LinearRSTD.res	=	rstandard(LinearR.lm)	

>	plot(XPrice,	LinearRSTD.res,		

ylab="Standardized	Residuals",	xlab="XPrice",		

main="Residual	Plot")	

Normality	distribution	of	errors
One	of	the	assumptions	of	linear	regression	is	that	errors	are	normally	distributed,	and	after	fitting	the
model,	we	need	to	check	that	errors	are	normally	distributed.

This	can	be	checked	by	executing	the	following	code	and	can	be	compared	with	theoretical	normal
distribution:

>	qqnorm(LinearRSTD.res,		

ylab="Standardized	Residuals",		

xlab="Normal	Scores",		

main="Error	Normal	Distribution	plot")		

>	qqline(LinearRSTD.res)	

	

	

	

Figure	3.5:	QQ	plot	of	standardized	residuals

Further	details	of	the	summary	function	for	the	linear	regression	model	can	be	found	in	the	R
documentation.	The	following	command	will	open	a	window	which	has	complete	information	about	the
linear	regression	model,	that	is,	lm().	It	also	has	information	about	each	and	every	input	variable,
including	their	data	type,	what	all	the	variables	this	function	returns	are,	and	how	output	variables	can	be
extracted,	along	with	the	examples:

>	help(summary.lm)			

Multivariate	linear	regression
In	multiple	linear	regression,	we	try	to	explain	the	dependent	variable	in	terms	of	more	than	one	predictor
variable.	The	multiple	linear	regression	equation	is	given	by	the	following	formula:

	

	

	

Here	 are	multiple	linear	regression	parameters	and	can	be	obtained	by	minimizing	the
sum	of	squares,	which	is	also	known	as	the	OLS	method	of	estimation.

Let	us	an	take	an	example	where	we	have	the	dependent	variable	StockYPrice	and	we	are	trying	to
predict	it	in	terms	of	independent	variables	StockX1Price,	StockX2Price,	StockX3Price,	and
StockX4Price,	which	are	present	in	the	dataset	DataMR.

Now	let	us	fit	the	multiple	regression	model	and	get	parameter	estimates	of	multiple	regression:

>	MultipleR.lm	=	lm(StockYPrice	~		StockX1Price	+	StockX2Price	+		StockX3Price	+	

StockX4Price,		data=DataMR)	

>	summary(MultipleR.lm)	

When	we	execute	the	preceding	code,	it	fits	the	multiple	regression	model	on	the	data	and	gives	the	basic
summary	of	statistics	associated	with	multiple	regression:

	

	

	

Figure	3.6:	Summary	of	multivariate	linear	regression

Just	like	the	simple	linear	regression	model,	the	lm	function	estimates	the	coefficients	of	the	multiple
regression	model,	as	shown	in	the	previous	summary,	and	we	can	write	our	prediction	equation	as
follows:

>	StockYPrice	=	88.42137	+(-0.16625)*StockX1Price		

+	(-0.00468)	*	StockX2Price	+	(.03497)*StockX3Price+	(.02713)*StockX4Price	

For	any	given	set	of	independent	variables,	we	can	find	the	predicted	dependent	variable	by	using	the
previous	equation.

For	any	out	of	sample	data,	we	can	obtain	the	forecast	by	executing	the	following	code:

>	newdata	=	data.frame(StockX1Price=70,	StockX2Price=90,	StockX3Price=60,	

StockX4Price=80)	

>	predict(MultipleR.lm,	newdata)	

This	gives	the	output	80.63105	as	the	predicted	value	of	the	dependent	variable	for	the	given	set	of
independent	variables.

Coefficient	of	determination
For	checking	the	adequacy	of	a	model,	the	main	statistics	are	the	coefficient	of	determination	and	adjusted
coefficient	of	determination,	which	have	been	displayed	in	the	summary	table	as	R-squared	and	adjusted
R-squared	matrices.

We	can	also	obtain	them	using	the	following	code:

>	summary(MultipleR.lm)$r.squared		

>	summary(MultipleR.lm)$adj.r.squared		

From	the	summary	table,	we	can	see	which	variables	are	becoming	significant.	If	the	Pvalue	associated
with	the	variables	in	the	summary	table	is	<0.05	then	the	specific	variable	is	significant,	otherwise	it	is
insignificant.

Confidence	interval

We	can	find	the	prediction	interval	for	the	95%	confidence	interval	for	the	predicted	value	by	the	multiple
regression	model	by	executing	the	following	code:

>	predict(MultipleR.lm,	newdata,	interval="confidence")	

The	preceding	code	generates	the	following	output:

	

	

	

Figure	3.7:	Prediction	of	confidence	interval	for	multiple	regression	model

Multicollinearity
If	the	predictor	variables	are	correlated	then	we	need	to	detect	multicollinearity	and	treat	it.	Recognition
of	multicollinearity	is	crucial	because	two	or	more	variables	are	correlated,	which	shows	a	strong
dependence	structure	between	those	variables,	and	we	are	using	correlated	variables	as	independent
variables,	which	end	up	having	a	double	effect	of	these	variables	on	the	prediction	because	of	the	relation
between	them.	If	we	treat	the	multicollinearity	and	consider	only	variables	which	are	not	correlated	then
we	can	avoid	the	problem	of	double	impact.

We	can	find	multicollinearity	by	executing	the	following	code:	>	vif(MultipleR.lm)

This	gives	the	multicollinearity	table	for	the	predictor	variables:

	

	

Figure	3.8:	VIF	table	for	multiple	regression	model	Depending	upon	the	values	of	VIF,	we	can	drop	the
irrelevant	variable.

ANOVA
ANOVA	is	used	to	determine	whether	there	are	any	statistically	significant	differences	between	the	means
of	three	or	more	independent	groups.	In	the	case	of	only	two	samples,	we	can	use	the	t-test	to	compare	the
means	of	the	samples,	but	in	the	case	of	more	than	two	samples,	it	may	be	very	complicated.	We	are	going
to	study	the	relationship	between	quantitative	dependent	variable	returns	and	single	qualitative
independent	variable	stock.	We	have	five	levels	of	stock:	stock1,	stock2,	..	stock5.

We	can	study	the	five	levels	of	stock	by	means	of	a	box	plot	and	we	can	compare	by	executing	the
following	code:

>	DataANOVA	=	read.csv("C:/Users/prashant.vats/Desktop/Projects/BOOK	

R/DataAnova.csv")	

>head(DataANOVA)	

This	displays	a	few	lines	of	the	data	used	for	analysis	in	tabular	format:

Returns Stock

1 1.64 Stock1

2 1.72 Stock1

3 1.68 Stock1

4 1.77 Stock1

5 1.56 Stock1

6 1.95 Stock1

>boxplot(DataANOVA$Returns	~	DataANOVA$Stock)	

This	gives	the	following	output	and	box	plots	it:

	

	

	

Figure	3.9:	Box	plot	of	different	levels	of	stock

The	preceding	box	plot	shows	that	level	stock	has	higher	returns.	If	we	repeat	the	procedure,	we	are	most
likely	going	to	get	different	returns.	It	may	be	possible	that	all	the	levels	of	stock	give	similar	numbers
and	we	are	just	seeing	random	fluctuation	in	one	set	of	returns.	Let	us	assume	that	there	is	no	difference	at
any	level	and	it	is	our	null	hypothesis.	Using	ANOVA,	let	us	test	the	significance	of	the	hypothesis:

>	oneway.test(Returns	~	Stock,	var.equal=TRUE)	

Executing	the	preceding	code	gives	the	following	outcome:

	

	

	

Figure	3.10:	Output	of	ANOVA	for	different	levels	of	stock

Since	the	Pvalue	is	less	than	0.05,	the	null	hypothesis	gets	rejected.	The	returns	at	the	different	levels	of

stock	are	not	similar.

Feature	selection
Feature	selection	is	one	of	the	toughest	parts	of	financial	model	building.	Feature	selection	can	be	done
statistically	or	by	having	domain	knowledge.	Here	we	are	going	to	discuss	only	a	few	of	the	statistical
feature	selection	methods	in	the	financial	space.

Removing	irrelevant	features
Data	may	contain	highly	correlated	features	and	the	model	does	better	if	we	do	not	have	highly	correlated
features	in	the	model.	The	Caret	R	package	gives	the	method	for	finding	a	correlation	matrix	between	the
features,	which	is	shown	by	the	following	example.

A	few	lines	of	data	used	for	correlation	analysis	and	multiple	regression	analysis	are	displayed	here	by
executing	the	following	code:

>DataMR	=	read.csv("C:/Users/prashant.vats/Desktop/Projects/BOOK	

R/DataForMultipleRegression.csv")	

>head(DataMR)	

StockYPrice StockX1Price StockX2Price StockX3Price StockX4Price

1 80.13 72.86 93.1 63.7 83.1

2 79.57 72.88 90.2 63.5 82

3 79.93 71.72 99 64.5 82.8

4 81.69 71.54 90.9 66.7 86.5

5 80.82 71 90.7 60.7 80.8

6 81.07 71.78 93.1 62.9 84.2

The	preceding	output	shows	five	variables	in	DataMR	named	StockYPrice,	StockX1Price,
StockX2Price,	StockX3Price,	and	StockX4Price.	Here	StockYPrice	is	dependent	and	all	the	other
four	variables	are	independent	variables.	Dependence	structure	is	very	important	to	study	for	going	deep
into	the	analysis.

The	following	command	calculates	the	correlation	matrix	between	the	first	four	columns,	which	are
StockYPrice,	StockX1Price,	StockX2Price¸	and	StockX3Price:

>	correlationMatrix<-	cor(DataMR[,1:4])	

	

	

	

Figure	3.11:	Correlation	matrix	table

The	preceding	correlation	matrix	shows	which	variables	are	highly	correlated	and,	accordingly,	the
feature	will	be	selected	in	such	a	way	that	highly	correlated	features	are	not	in	the	model.

Stepwise	variable	selection
We	can	use	stepwise	variable	selection	(forward,	backward,	both)	in	predictive	models	using	the
stepAIC()	function	for	feature	selection.

This	can	be	done	by	executing	the	following	code:

>	MultipleR.lm	=	lm(StockYPrice	~		

StockX1Price	+	StockX2Price	+	StockX3Price	+	StockX4Price,		

data=DataMR)	

>	step	<-	stepAIC(MultipleR.lm,	direction="both")	

>	step$anova		

Here,	we	are	using	the	dataset	used	for	multiple	regression	as	the	input	dataset.	One	can	also	use	all-
subsets	regression	using	the	leaps()	function	from	the	leaps	package.

Variable	selection	by	classification
We	can	use	classification	techniques	such	as	decision	tree	or	random	forest	to	get	the	most	significant
predictors.	Here	we	are	using	random	forest	(code	is	given)	to	find	the	most	relevant	features.	All	the	four
attributes	in	the	dataset	DataForMultipleRegression1	have	been	selected	in	the	following	example	and
the	plot	shows	the	accuracy	of	different	subset	sizes	comparing	across	all	the	subsets:

>library(mlbench)	

>library(caret)	

>DataVI	=	read.csv("C:/Users/prashant.vats/Desktop/Projects/BOOK	

R/DataForMultipleRegression1.csv")	

>head(DataVI)	

It	displays	a	few	lines	of	the	data	used	for	analysis,	as	shown	in	the	following	table:

PortfolioYDirection StockX1Price StockX2Price StockX3Price StockX4Price

1 0 72.86 93.1 63.7 83.1

2 1 72.88 90.2 63.5 82

3 0 71.72 99 64.5 82.8

4 0 71.54 90.9 66.7 86.5

5 1 71 90.7 60.7 80.8

6 0 71.78 93.1 62.9 84.2

Execute	the	following	code	to	do	the	required	analysis:

>control<-	rfeControl(functions=rfFuncs,	method="cv",	number=10)	

>Output	<-	rfe(DataVI[,1:4],	DataVI[,0:1],	sizes=c(1:4),	rfeControl=control)	

>predictors(Output)	

>plot(Output,	type=c("g",	"o"))	

It	generates	the	following	plot,	showing	the	accuracy	of	different	subset	sizes	comparing	across	all	the
subsets:

	

	

	

Figure	3.12:	Plot	showing	model	accuracy	of	different	subset	sizes

We	have	given	some	of	the	examples	of	feature	selection.	Some	of	the	other	feature	selection	methods
such	as	classification	techniques	and	information	value	for	predictive	modeling	are	also	available.

Ranking	of	variables
After	fitting	a	regression/predictive	model,	we	need	to	understand	what	the	relative	ranking	of	significant
attributes	is	on	a	comparative	scale.	This	is	explained	by	Beta	parameter	estimates.	Beta,	or	standardized
coefficients,	are	the	slopes	we	get	if	all	the	variables	are	on	the	same	scale,	which	is	done	by	converting
them	to	z-scores	before	doing	the	predictive	modeling	(regression).	Beta	coefficients	allow	a	comparison
of	the	approximate	relative	importance	of	the	predictors	and	hence	the	variables	can	be	ranked,	which
neither	the	unstandardized	coefficients	nor	the	Pvalues	can.	Scaling,	or	standardizing,	the	data	vectors	can
be	done	using	the	scale()	function.	Once	the	scaled	variables	are	created,	the	regression	is	redone	using
them.	The	resulting	coefficients	are	the	beta	coefficients.

Wavelet	analysis
Time	series	information	is	not	always	sufficient	to	get	insight	into	the	data.	Sometimes	the	frequency
content	of	the	data	also	contains	important	information	about	the	data.	In	the	time	domain,	Fourier
transformation	(FT)	captures	the	frequency-amplitude	of	the	data	but	it	does	not	show	when	in	time	this
frequency	has	happened.	In	the	case	of	stationary	data,	all	frequency	components	exist	at	any	point	in	time
but	this	is	not	true	for	non-stationary	data.	So,	FT	does	not	fit	for	non-stationary	data.	Wavelet
transformation	(WT)	has	the	capacity	to	provide	time	and	frequency	information	simultaneously	in	the
form	of	time-frequency.	WT	is	important	to	analyze	financial	time	series	as	most	of	the	financial	time
series	are	non-stationary.	In	the	remainder	of	this	chapter,	wavelet	analysis	(WT),	I	will	help	you
understand	how	to	solve	non-stationary	data	in	R	using	wavelets	analysis.	Stock	price/index	data	requires
certain	techniques	or	transformations	to	obtain	further	information	about	the	series	which	raw	data	does
not	show.	The	daily	closing	price	for	the	Dow	Jones	Industrial	Average	(DJIA)	and	S&P500	index
from	January	1,	2010	to	December	31,	2015	has	been	used	for	illustration	purposes.	I	am	going	to	use	the
wavelets	package	for	this:

1.	 Before	starting	to	work	with	wavelets	transformation,	you	have	to	install	the	package	named
Wavelets:

>		install.packages('wavelets')	

2.	 Once	you	install	it	or	you	already	have	this	package	in	your	machine	then	you	just	have	to	load	it	into
the	workspace:

>	library(wavelets)	

3.	 To	get	a	first	impression	of	the	data,	we	plot	the	dji	and	snp	time	series	and	their	reture:

>			par(mfrow=c(2,1))	

								>			plot(dji,type="l")	

								>			plot(ret_dji,type="l")	

The	first	line	is	used	to	divide	the	plot	into	a	two-by-one	matrix,	so	the	plot	can	have	two	plots	in	one
figure,	and	the	next	two	commands	plot	the	Dow	Jones	price	and	its	return	series,	which	can	be	seen	in
Figure	3.13:

	

	

	

Figure	3.13:	Price	and	return	series	for	Dow	Jones	Index	(DJI)

The	dji	and	snp	time	series	are	non-stationary.	We	use	head	and	tail	to	look	at	the	first	and	last	part	of
the	time	series:

>head	(dji)	

											DJI.Close	

2010-01-04	10583.96	

2010-01-05	10572.02	

2010-01-06	10573.68	

2010-01-07	10606.86	

2010-01-08	10618.19	

2010-01-11	10663.99	

	

>tail	(dji)	

											DJI.Close	

2015-12-23	17602.61	

2015-12-24	17552.17	

2015-12-28	17528.27	

2015-12-29	17720.98	

2015-12-30	17603.87	

2015-12-31	17425.03	

Now	we	apply	discrete	wavelets	transformation	(DWT)	on	the	dji	data	and	decompose	it	using

various	filters.	It	requires	data	in	time	series,	matrix,	or	data	frame	format.	We	look	at	the	dji	variable
format	which	is	xts	and	zoo	object.	So	we	need	to	convert	it	into	an	acceptable	format:

dji<-	as.ts	(dji)		

Now	it	is	ready	to	be	used	in	discrete	wavelets	transformation's	R	function.	We	also	need	to	provide	other
parameters,	such	as	the	type	of	filter	you	will	be	using	and	the	number	of	levels	you	want	your	data	to	be
decomposed	into:

model<-	dwt	(dji,	filter="la8",	n.levels=3)	

It	saves	the	output	in	the	variable	called	model.	You	can	write	model	on	the	command	prompt	and	it	will
display	the	output	in	the	command	prompt:

>model	

It	generates	output	which	consists	of	various	information	matrices	such	as	wavelet	coefficients,	scaling
coefficients,	type	of	filter	used,	and	number	of	levels	used.	You	can	extract	any	individual	information	as
well.	To	extract	wavelet	coefficients,	you	have	to	write	the	following	command	on	the	command	prompt:

>model	

It	generates	output	which	consists	of	various	information	matrices	such	as	wavelet	coefficients,	scaling
coefficients,	type	of	filter	used,	and	number	of	levels	used.	You	can	extract	any	individual	information	as
well.	To	extract	wavelet	coefficients,	you	have	to	write	the	following	command	on	the	command	prompt:

>model@W										#	to	extract	wavelets	coefficients	

>model@V										#	to	extract	scaling	coefficients	

These	commands	generate	a	relative	list	of	wavelets	and	scaling	coefficients.	To	get	an	individual
component	of	wavelets,	you	have	to	mention	the	following:

>	model@W$W1						#	to	extract	first	level	of	wavelet	coefficients	

>	model@V$V1						#	to	extract	first	level	of	scaling	coefficients	

We	can	also	use	the	plot	command	to	visualize	data	series,	wavelets,	and	scaling	coefficients:

>	plot	(model)		

Figure	3.14	will	plot	the	price	and	its	various	level	coefficients	and	help	us	to	visualize	and	understand
the	data	clearly:

	

	

	

Figure	3.14:	Plots	for	time	series,	wavelets,	and	scaling	coefficients

You	can	also	use	the	discrete	wavelet	transformation	function	for	the	haar	filter:

model<-	dwt	(dji,	filter="haar",	n.levels=3)	

>	plot	(model)		

It	will	plot	the	data	series,	wavelets,	and	scaling	coefficients	using	the	haar	filter.

To	compute	inverse	discrete	wavelet	transformation,	you	have	to	use	a	wavelet	object,	as	defined	using
discrete	wavelet	transformation.	The	variable	model	is	a	wavelet	object	using	the	haar	filter:

imodel<-	idwt(model,	fast=TRUE)	

Sometimes	it	is	necessary	to	know	the	class	of	the	R	objects,	for	example,	model	and	imodel.

We	can	use	the	following	commands	for	this:

>	class(model)	

[1]	"dwt"	

attr(,"package")	

[1]	"wavelets"			

>		class(imodel)	

[1]	"ts"	

The	variable	imodel	is	created	using	inverse	wavelet	transformation	and	it	generates	an	original	time
series	object.

Multiresolution	analysis	(MRA)	is	another	widely	useful	wavelet	method	for	time	series	analysis.
Financial	markets	generate	large	quantities	of	data,	which	is	analyzed	to	generate	algorithmic	trading
signals.	Wavelet	multi-resolution	analysis	is	increasingly	being	applied	to	these	datasets	because	it
enables	traders	to	focus	on	a	particular	time	scale	where	trading	patterns	are	considered	important.	The
la8	filter	is	used	in	the	following	example	and	the	haar	filter	also	can	replaced	for	la8:

>	model	<-	mra(dji,	filter="la8",	n.levels=3)	

For	the	analysis	of	market	data,	maximal	overlap	discrete	wavelet	transform	(MODWT)	is	preferred.

As	an	example,	I	considered	the	case	of	Dow	Jones	Index	time	series,	dji,	as	input	to	the	modwt	function:

>	model	<-	modwt(dji,	filter="la8",	n.levels=5)	

The	preceding	function	decomposes	the	time	series	in	detailed	wavelets	and	scaled	coefficients,	which
can	be	seen	in	Figure	3.15.	The	plot.modwt()	function	can	be	used	to	plot	this	modwt	output:

>plot.modwt(model)	

	

	

	

Figure	3.15:	Plot	of	Maximal	Overlap	Discrete	wavelets	transform

A	few	jumps	in	the	time	series	can	be	seen	as	jumps	in	smaller	coefficients	such	as	W1	and	W2,	and
smooth	coefficients	such	as	W6	show	movement	about	some	mean	for	the	time	period.	Wavelets	and
scaled	coefficients	in	Figure	3.15	clearly	show	price	data	at	different	time	scales.

Wavelet	analysis	provides	an	important	tool	in	quantitative	finance,	with	applications	ranging	from	short-
term	prediction	and	the	calculation	of	variance	in	relation	to	specific	time	scales.

Fast	Fourier	transformation
Fast	Fourier	transformation	(FFT)	is	used	for	calculating	the	Fourier	transform	of	discrete	time	series.
You	need	to	install	the	relevant	package	fft	for	FFT	with	the	help	of	the	following	code:

install.packages('fft')	

Once	you	install	the	package,	you	have	to	load	this	into	the	workspace	by	using	the	following	code:

library(fft)	

Fast	Fourier	transform	of	time	series	can	be	calculated	using	fft,	and	it	accepts	real	or	complex	numbers
series.

In	the	following	example,	dji	is	a	real	number	time	series:

>	model<-	fft(dji)		

The	variable	model	is	a	transformed	series	which	basically	consists	of	complex	numbers,	and	the	real
and	imaginary	parts	can	be	extracted	using	the	following	code:

>rp	=	Re(model)	

>ip	=	Im(model)	

The	following	command	calculates	the	absolute	value	of	the	model:

>absmodel<-	abs(model)	

Let	me	plot	this	and	see	what	information	the	absolute	value	of	fft	has	for	me:

>plot(absmodel)	

	

	

	

Figure	3.16:	Plot	for	absolute	value	of	FFT	modeled	series

Figure	3.16	shows	spikes	at	both	ends	of	the	data.	FFT	can	accept	complex	inputs,	when	the	input	is	real
(as	with	most	real-world	cases).	The	output	for	bins	greater	than	N/2	is	redundant	and	does	not	provide
additional	spectral	information.	So,	we	can	remove	the	values	for	bins	>	N/2.	This	arises	from	lack	of
normalization.

Results	need	to	be	normalized	for	the	sample	size.	As	the	input	data	is	real-valued,	data	greater	than	N/2
is	removed	and	we	normalize	the	data	by	N/2:

>norm_absmodel<-	absmodel[1:(length(dji)/2)]	

The	angle	between	the	real	and	imaginary	parts	of	the	Fourier	transformed	series	is	calculated	as	follows:

Angle	=	atan2(ip,	rp)	

Sometimes	it	is	important	to	analyze	the	spectrum	density	of	the	time	series	and	this	can	be	calculated	in	R
using	the	following	code:

>spec_density<-	spectrum(dji,	method	=	c("pgram",	"ar"))	

It	accepts	two	methods:	periodogram	and	autoregressive.	You	can	choose	either	of	these	methods.	This

function	returns	the	vector	of	frequencies	at	which	spectral	densities	are	estimated,	as	well	as	the	vector
of	estimated	spectral	densities	at	frequency.	It	also	returns	some	other	parameters	which	are	useful	to
multivariate	analysis,	such	as	coherence	level	and	phase	between	multivariate	series.

Hilbert	transformation
Hilbert	transformation	is	another	technique	to	transform	time	series	and	R	uses	the	seewave	package	for
this.	This	package	can	be	installed	using	install.packages()	and	loaded	into	the	workspace	using	the
library()	command:

>	model	<-		hilbert(dji,	1)	

The	first	parameter	is	the	time	series	object	which	you	would	like	to	transform,	and	the	second	parameter
is	the	sampling	frequency	of	the	wave.	In	the	preceding	example,	I	used	dji	as	time	series	and	sampling
frequency	as	1	to	calculate	the	Hilbert	transformation.

If	you	would	like	to	know	the	output	of	the	model	then	you	should	use	the	following	code:

>	summary(model)	

						V1										

	Length:2555	

	Class	:complex	

	Mode		:complex	

The	preceding	output	mentions	the	length	of	input	data	series	is	2555	and	the	type	of	output	variable
named	model	is	complex.

As	the	output	is	complex,	we	can	extract	real	and	imaginary	values	using	the	following	code:

>rp<-	Re(model)			

>ip<-	Im(model)	

Here,	the	real	part	is	the	original	time	series,	which	is	dji	in	our	case,	and	the	imaginary	part	is	the
Hilbert	transformed	series	of	the	original	series.	ifreq()	returns	the	phase	or	instantaneous	frequency,
depending	upon	what	output	we	want:

>ifreq(dji,1,ylim=c(0,0.00001))	

The	preceding	code	will	generate	instantaneous	frequency:

	

	

	

Figure:3.17.	Instantaneous	frequency	of	time	series	using	Hilbert	transformation

However,	if	we	would	like	to	generate	phases	then	we	have	to	explicitly	mention	PHASE=TRUE	in	the
function:

>ifreq(dji,	1	,phase="TRUE",ylim=c(-0.5,1))	

Figure	3.18	shows	the	phases	with	respect	to	time	variations.	As	time	progresses,	phases	also	increase
with	the	increase	in	time:

	

	

	

Figure	3.18:	Phases	of	time	series	using	Hilbert	transformation

By	default,	the	plot	is	true.	If	we	say	PLOT=FALSE,	then	it	will	not	generate	a	plot	and	only	generate
variables	in	the	workspace:

>	output	=	ifreq(dji,	1	,plot=FALSE)	

The	output	variable	is	in	the	form	of	a	list	which	contains	both	instantaneous	frequency	and	phase	and	can
be	extracted	using	the	following:

>freq<-	output$f	

>phase<-	output$p	

Sometimes	we	analyze	a	pair	of	time	series	and	then	calculating	phase	difference	is	crucial	rather	than
looking	at	the	phase	of	univariate	series.	So,	phase	difference	can	be	calculated	by	simply	calculating
phases	of	individual	series	and	then	subtracting	the	phase	of	one	series	from	the	other	series:

>phase_difference<-	phase1	-	phase2	

There	is	another	package,	waveslim,	which	has	all	these	transformations,	such	as	discrete	wavelet
transformation,	fast	Fourier	transformation,	and	Hilbert	transformation,	in	one.	In	fact,	there	are	many
more	packages	which	contain	these	transformations.	You	can	use	whichever	you	are	comfortable	with	and

find	easy	to	use.

Questions
1.	 Define	regression	and	how	you	can	implement	in	R.
2.	 How	do	you	find	the	coefficient	of	determination	for	linear	regression	/	multiple	regression	in	R?
3.	 How	do	you	find	the	confidence	interval	for	a	prediction	fitted	with	linear	regression	/	multiple

regression	in	R?
4.	 How	will	you	detect	multicollinearity	in	R	in	multiple	regression?
5.	 What	is	the	significance	of	ANOVA	and	how	will	you	use	it	to	compare	the	results	of	two	linear

regression	models?
6.	 How	do	you	perform	feature	selection	in	R	for	multiple	linear	regression?
7.	 How	do	you	rank	significance	attributes	in	a	multiple	linear	regression	model	in	R?
8.	 How	do	you	install	the	waveslim	package	and	load	it	into	the	R	workspace?
9.	 How	do	you	plot	a	time	series	and	extract	the	head	and	tail	of	the	time	series?
10.	 How	would	you	know	the	class	of	a	variable	created	by	the	fft	function?
11.	 How	do	you	use	the	dwt	function	using	any	given	filter	and	take	inverse	dwt?
12.	 How	do	you	extract	the	real	and	imaginary	parts	of	a	series?
13.	 How	would	you	use	fast	Fourier	transformation	and	Hilbert	transformation?

Summary
Regression	is	the	backbone	of	any	analysis	and	the	reader	cannot	go	ahead	without	touching	on	it.	In	this
chapter,	I	have	presented	linear	regression	and	multivariate	regression	and	how	they	are	used	for
prediction.	The	R	function	lm()	is	used	to	implement	both	simple	and	multivariate	linear	regression.	I
also	presented	significance	testing	along	with	residual	calculations	and	the	normality	plot,	which	tests
residuals	for	normality	using	a	qq	plot.	Analysis	of	variance	(ANOVA)	is	used	to	select	the	difference
means	of	two	or	more	samples.	Multivariate	linear	regression	involves	many	variables,	and	the
coefficient	of	each	variable	is	different,	which	varies	the	importance	of	each	variable	and	is	ranked
accordingly.	Stepwise	regression	is	used	to	select	variables	which	are	important	in	the	regression.	Time
series	analysis	does	not	represent	the	complete	information	sometimes.	It	becomes	necessary	to	explore
frequency	analysis,	which	can	be	done	with	wavelet,	fast	Fourier	and	Hilbert	transformation.	All	the
methods	are	implemented	in	R	for	frequency	analysis.	I	have	also	explained	how	results	can	be	seen	and
plotted	wherever	it	is	necessary.

In	the	next	chapter,	I	will	explain	time	series	analysis	and	prediction	techniques.

Chapter	4.	Time	Series	Modeling
Time	series	forecasting	analysis	is	one	of	the	most	important	components	of	quantitative	finance.	R
software	gives	a	lot	of	time	series	and	forecasting	packages	to	support	time	series	analysis.	There	are
sufficient	packages	in	R	to	convert	the	equally	spaced	and	unequally	spaced	series	in	time	series.	Also,
there	are	sufficient	packages	in	R	to	build	forecasting	models	such	as	autoregressive	integrated	moving
average	and	generalized	autoregressive	conditional	heteroscedasticity.	In	this	chapter,	we	are	going	to
give	brief	flavors	of	converting	any	series	into	time	series	and	forecasting	models.

In	this	chapter,	we	are	going	to	cover	the	following	topics:

General	time	series
Converting	data	to	time	series
zoo
xts
Linear	filters
AR
MA
ARIMA
GARCH
EGARCH
VGARCH
Dynamic	conditional	correlation

General	time	series
A	time	series	is	the	sequence	of	data	usually	collected	at	regular	intervals.	There	are	a	lot	of	domains
where	information	is	stored	in	time	series	form	and	needs	to	be	analyzed	for	future	planning.

For	example,	in	the	financial	domain,	we	have	the	daily/monthly	data	available	for	unemployment,	GDP,
daily	exchange	rates,	share	prices,	and	so	on.	So	all	the	investors	or	the	people	working	in	financial
institutions	need	to	plan	their	future	strategy	and	so	they	want	to	analyze	the	time	series	data.	Thus	time
series	play	a	crucial	role	in	the	financial	domain.

Time	series	data	is	very	unpredictable	in	nature	and	to	understand	the	data	we	need	to	decompose	the	time
series	data	into	various	components,	as	given	here:

Trend:	This	is	a	pattern	of	long-term	movements	in	the	mean	of	time	series	data.	The	trend	may	be
linear	or	nonlinear	and	keeps	changing	across	time.	There	is	no	sure	process	to	identify	the	exact
trend	but	if	it	is	behaving	monotonously	then	it	is	possible	to	estimate	with	a	certain	acceptable
degree	of	error.
Seasonal	effects:	These	are	cyclical	fluctuations	related	to	the	periodical	cycle.	So,	for	example,
the	sale	of	a	particular	product	spikes	during	a	particular	month/quarter	of	the	year.	The	seasonality
can	be	identified	by	plotting	the	series	and	inspecting	it.
Cycles	(Ct):	Apart	from	seasonal	cycles,	there	are	certain	cycles	which	are	associated	with
business	cycles	which	need	to	be	taken	care	of	when	doing	time	series	analysis.
Residuals:	Time	series	consist	of	systematic	patterns	and	random	noise	(error),	which	makes	it
difficult	to	identify	the	pattern.	Generally,	time	series	techniques	involve	certain	ways	of	filtering	the
noise	in	order	to	make	the	pattern	more	salient.

In	some	of	the	techniques	of	forecasting,	the	time	series	is	assumed	to	be	stationary.	The	stationarity	is
required	because	for	forecasting	we	are	assuming	the	mean	and	variance	to	be	static	as	that	will	be
required	for	future	forecasting	analysis.	If	the	series	is	nonstationary	then	we	difference	it	to	first	make	it
stationary	and	then	proceed	further.

Converting	data	to	time	series
A	time	series	is	a	sequence	of	data	points	where	each	data	point	is	associated	with	a	particular	time.

For	example,	the	adjusted	close	of	a	stock	is	the	closing	price	of	a	stock	on	a	particular	day.	The	time
series	data	is	stored	in	an	R	object	called	a	time	series	object	and	it	is	created	by	using	the	function	ts()
in	R.

The	basic	syntax	of	ts	is	given	here:	ts(data,	start,	end,	frequency)

Here:

data:	It	is	a	vector	or	matrix	containing	the	data	values
start:	It	is	the	starting	point	or	time	of	first	observation
end:	It	is	the	time	point	of	last	observation
frequency:	It	is	the	number	of	data	points	per	unit	time

Let	us	consider	a	vector	which	is	given	by	the	following	code:

>	StockPrice<

-c(23.5,23.75,24.1,25.8,27.6,27,27.5,27.75,26,28,27,25.5)	

>	StockPrice	

Now	convert	it	into	a	time	series	object,	which	can	be	done	with	the	following	code:	>	StockPricets<-
ts(StockPrice,start	=	c(2016,1),frequency	=	12)	>	StockPricets

The	output	is	as	follows:

	

	

	

Figure	4.1:	Table	showing	time	series	object

Let	us	plot	this	data	by	using	the	following	code:

>	plot(StockPricets)	

This	generates	the	following	output	plot:

	

	

	

Figure	4.2:	Time	series	plot	using	ts	object

The	frequency	parameter	in	the	ts()	function	identifies	at	which	time	the	interval	data	is	measured:

Frequency	=	12	means	that	data	is	at	monthly	level
Frequency	=	4	means	that	data	is	at	quarterly	level
Frequency	=	6	means	data	points	for	every	10	minutes	of	an	hour
Frequency	=	5	means	that	data	is	at	daily	level	business	days

zoo
The	ts	object	has	its	limitations	in	representing	the	time	series.	It	is	used	for	representing	equally	spaced
data.	It	cannot	be	used	to	represent	the	daily	level	stock	prices	as	stock	prices	are	equally	spaced
between	Monday	to	Friday,	but	it	is	not	the	same	case	for	Friday	to	Monday	and	in	case	there	is	market
holidays	on	weekdays.	This	type	of	unequally	spaced	data	cannot	be	represented	by	a	ts	object.

zoo	is	flexible	and	fully	equipped	to	handle	unequally	spaced	data,	equally	spaced	data,	and	numerically
indexed	data.

Let	us	first	install	and	load	the	zoo	library.	This	can	be	done	by	executing	the	following	code:

>	install.packages("zoo")	

>	library(zoo)	

Now	we	will	discuss	how	to	represent	different	time	series	scenarios	using	zoo.

Please	note	we	will	be	using	a	common	dataset	for	all	the	examples.

Constructing	a	zoo	object
In	order	to	create	a	zoo	object,	an	ordered	time	index	and	data	are	required.	So	we	are	going	to	construct
a	zoo	object.

Let	us	first	import	a	few	rows	of	our	sample	dataset,	which	can	be	done	with	the	following	code:

>StockData	<-	read.table("DataChap4.csv",header	=	TRUE,	sep	=	",",nrows=3)	

This	gives	the	following	output:

Date Volume Adj.Close Return

12/14/2016 4144600 198.69 0.27

12/13/2016 6816100 198.15 2.97

12/12/2016 615800 192.43 0.13

Now	let	us	try	to	convert	this	DataFrame	into	a	zoo	object.	This	can	be	done	by	executing	the	following
code:

>	dt	=	as.Date(StockData$Date,	format="%m/%d/%Y")	

>Stockdataz	=	zoo(x=cbind(StockData$Volume,StockData$Adj.Close),	order.by=dt)		

>	colnames(Stockdataz)	<-	c("Volume","Adj.Close")	

>	Stockdataz	

Upon	execution,	it	generates	the	following	zoo	object:

Volume Adj.Close

12/12/2016 615800 192.43

12/13/2016 6816100 198.15

12/14/2016 4144600 198.69

Reading	an	external	file	using	zoo
The	function	read.zoo	is	a	wrapper	which	can	be	used	to	read	an	external	dataset,	which	assumes	that
the	first	column	is	the	index	and	rest	of	the	columns	are	data.

Now	let	us	read	a	dataset	using	zoo	which	has	the	following	format:

Date Volume Adj	Close Return

12/14/2016 4144600 198.69 0.27

We	execute	the	following	code:

>StockData	<-	read.zoo("DataChap4.csv",header	=	TRUE,	sep	=	",",format="%m/%d/%Y")	

This	gives	us	an	output	with	the	following	format:

Volume Adj.Close Return

2016-12-14 4144600 198.69 0.27

Advantages	of	a	zoo	object
Here	are	some	of	the	examples	that	show	the	advantageous	behavior	of	a	zoo	object.

Subsetting	the	data

Subsetting	can	be	done	on	an	index	using	the	window()	function	by	executing	the	following	code:

>window(StockData,	start=as.Date("2016/11/1"),	end=as.Date("2016/11/3"))	

This	gives	the	following	output:

Volume Adj.Close Return

11/1/2016 7014900 190.79 -3.51

11/2/2016 4208700 188.02 -1.45

11/3/2016 2641400 187.42 -0.32

Merging	zoo	objects

Let	us	form	two	zoo	objects	with	a	common	index	and	then	merge	them.	This	can	be	done	by	executing	the
following	code:

>	StockData	<-	read.table("DataChap4.csv",header	=	TRUE,	sep	=	",",nrows=3)	

>	zVolume	<-zoo(StockData[,2:2],as.Date(as.character(StockData[,	1]),	

format="%m/%d/%Y"))	

>	zAdj.Close	<-zoo(StockData[,3:3],as.Date(as.character(StockData[,	1]),	

format="%m/%d/%Y"))	

>	cbind(zVolume,	zAdj.Close)	

The	final	output	is	given	in	the	following	table:

zVolume zAdj.Close

12/12/2016 615800 192.43

12/13/2016 6816100 198.15

12/14/2016 4144600 198.69

Plotting	zoo	objects

You	can	plot	your	data	across	time.	A	sample	is	shown	here:

>plot(StockData$Adj.Close)	

This	generates	the	following	plot:

	

	

	

Figure	4.3:	Time	series	plot	using	zoo	object

Disadvantages	of	a	zoo	object
An	index	in	a	zoo	object	cannot	have	Date	classed	variables,	whereas	the	index	of	an	xts	object	has	to
be	a	known	and	supported	time	or	Date	class.	Also,	in	zoo,	we	cannot	add	arbitrary	attributes	which
can	be	done	in	xts.

xts
xts	is	an	extensible	time	series	object	which	carries	all	the	features	of	a	zoo	object.	It	consists	of	a
matrix	and	index	which	has	to	be	time-based.	There	are	two	ways	of	constructing	xts	objects:	one	is	by
calling	as.xts	and	another	is	constructing	the	xts	object	from	scratch.

Construction	of	an	xts	object	using	as.xts
Let	us	read	a	few	lines	of	our	sample	data	through	zoo	and	construct	the	xts	object	by	executing	the
following	code:

>	StockData	<-	read.zoo("DataChap4.csv",header	=	TRUE,	sep	=	

",",format="%m/%d/%Y",nrows=3)	

>	matrix_xts	<-	as.xts(StockData,dateFormat='POSIXct')	

>	matrix_xts	

This	gives	the	following	output:

Volume Adj.Close Return

12/12/2016 615800 192.43 0.13

12/13/2016 6816100 198.15 2.97

12/14/2016 4144600 198.69 0.27

The	composition	of	the	xts	object	can	be	given	by	the	following	code:

>	str(matrix_xts)	

This	generates	the	following	output:

An	xts	object	on	2016-12-12/2016-12-14	contains	the	following:

Data:	num	[1:3,	1:3]	615800	6816100	4144600	192	198	...	

	-	attr(*,	"dimnames")=List	of	2	

		..$:	NULL	

		..$:	chr	[1:3]	"Volume"	"Adj.Close"	"Return"	

		Indexed	by	objects	of	class:	[Date]	TZ:	UTC	

		xts	Attributes:			

List	of	1	

	$	dateFormat:	chr	"POSIXct"	

Constructing	an	xts	object	from	scratch
Let	us	first	form	a	matrix	and	date	sequence	of	same	order	and	then	convert	it	into	an	xts	object.	This	can
be	done	by	executing	the	following	code:

>	x<-matrix(5:8,	ncol	=2,	nrow	=2)	

>	dt<-as.Date(c("2016-02-02","2016-03-02"))	

>	xts_object<-xts(x,order.by=dt)	

>	colnames(xts_object)	<-	c("a","b")	

>	xts_object	

This	gives	the	xts	object,	as	displayed	here:

a b

2/2/2016 5 7

3/2/2016 6 8

The	special	aspects	of	an	xts	object	is	that	it	behaves	like	a	matrix	with	time	associated	with	each
observation.	The	subsets	will	always	preserve	the	matrix	form	and	the	attributes	of	the	xts	objects	are
always	retained.	Also,	since	xts	is	a	subclass	of	zoo,	it	gets	all	the	power	of	the	zoo	library.

Linear	filters
The	first	step	in	time	series	analysis	is	to	decompose	the	time	series	in	trend,	seasonality,	and	so	on.

One	of	the	methods	of	extracting	trend	from	the	time	series	is	linear	filters.

One	of	the	basic	examples	of	linear	filters	is	moving	average	with	equal	weights.

Examples	of	linear	filters	are	weekly	average,	monthly	average,	and	so	on.

The	function	used	for	finding	filters	is	given	as	follows:

Filter(x,filter)

Here,	x	is	the	time	series	data	and	filter	is	the	coefficients	needed	to	be	given	to	find	the	moving
average.

Now	let	us	convert	the	Adj.Close	of	our	StockData	in	time	series	and	find	the	weekly	and	monthly
moving	average	and	plot	it.	This	can	be	done	by	executing	the	following	code:	>	StockData	<-
read.zoo("DataChap4.csv",header	=	TRUE,	sep	=	",",format="%m/%d/%Y")	>PriceData<-
ts(StockData$Adj.Close,	frequency	=	5)	>	plot(PriceData,type="l")	>	WeeklyMAPrice	<-
filter(PriceData,filter=rep(1/5,5))	>	monthlyMAPrice	<-	filter(PriceData,filter=rep(1/25,25))	>
lines(WeeklyMAPrice,col="red")	>	lines(monthlyMAPrice,col="blue")

This	generates	the	following	plot:

	

	

	

Figure	4.4:	Example	of	moving	average	using	linear	filter

AR
AR	stands	for	autoregressive	model.	Its	basic	concept	is	that	future	values	depend	on	past	values	and
they	are	estimated	using	a	weighted	average	of	the	past	values.	The	order	of	the	AR	model	can	be
estimated	by	plotting	the	autocorrelation	function	and	partial	autocorrelation	function	of	the	series.	In	time
series	autocorrelation	function	measures	correlation	between	series	and	it's	lagged	values.	Whereas
partial	autocorrelation	function	measures	correlation	of	a	time	series	with	its	own	lagged	values,
controlling	for	the	values	of	the	time	series	at	all	shorter	lags.	So	first	let	us	plot	the	acf	and	pcf	of	the
series.	Let	us	first	plot	the	acf	plot	by	executing	the	following	code:

>	PriceData<-ts(StockData$Adj.Close,	frequency	=	5)	

>	acf(PriceData,	lag.max	=	10)	

This	generates	the	autocorrelation	plot	as	displayed	here:

	

Figure	4.5:	acf	plot	of	price

Now	let	us	plot	pacf	by	executing	the	following	code:

>	pacf(PriceData,	lag.max	=	10)	

This	generates	the	partial	autocorrelation	plot	as	shown	here:

	

Figure	4.6:	pacf	plot	of	price

The	preceding	plots	are	autocorrelation	and	partial	autocorrelation	plots	of	the	series	considered.	Now
let	us	come	to	identify	the	order	of	AR.	Since	here	there	is	no	differencing	and	acf	is	decaying	slowly,
whereas	pacf	cuts	off	after	one	lag,	so	the	order	of	AR	is	1.	Similarly,	if	pacf	cuts	off	after	second	lag
and	acf	is	decaying	slowly,	then	the	order	of	AR	is	2.

MA
MA	stands	for	moving	average	and	in	MA	modeling	we	do	not	take	into	account	the	past	values	of	the
actual	series.	We	consider	the	moving	average	of	the	past	few	forecast	errors	in	this	process.	For
identifying	the	orders	of	MA,	we	also	need	to	plot	acf	and	pacf.	So	let	us	plot	the	acf	and	pacf	of	the
volume	of	StockData	to	evaluate	the	order	of	MA.	acf	can	be	plotted	by	executing	the	following	code:

>	VolumeData<-ts(StockData$Volume,	frequency	=	5)	

>	acf(VolumeData,	lag.max	=	10)	

This	gives	the	following	acf	plot:

	

Figure	4.7:	acf	plot	of	volume

Let	us	plot	the	pacf	plot	of	volume	by	executing	the	following	code:

>	pacf(VolumeData,	lag.max	=	10)	

This	gives	the	following	plot:

	

Figure	4.8:	pacf	plot	of	volume

After	evaluating	the	preceding	plots,	the	acf	cuts	sharply	after	lag1	so	the	order	of	MA	is	1.

ARIMA
ARIMA	stands	for	autoregressive	integrated	moving	average	models.	Generally,	it	is	defined	by	the
equation	ARIMA(p,	d,	q).

Here,

p	is	the	order	of	the	autoregressive	model
d	is	the	order	required	for	making	the	series	stationary
q	is	the	order	of	moving	average

The	very	first	step	in	ARIMA	is	to	plot	the	series,	as	we	need	a	stationary	series	for	forecasting.

So	let	us	first	plot	the	graph	of	the	series	by	executing	the	following	code:

>	PriceData<-ts(StockData$Adj.Close,	frequency	=	5)	

>	plot(PriceData)	

This	generates	the	following	plot:

	

Figure	4.9:	Plot	of	price	data

Clearly,	upon	inspection,	the	series	seems	to	be	nonstationary,	so	we	need	to	make	it	stationary	by
differencing.	This	can	be	done	by	executing	the	following	code:

>	PriceDiff	<-	diff(PriceData,	differences=1)	

>	plot(PriceDiff)	

This	generates	the	following	plot	for	the	differenced	series:

	

Figure	4.10:	Plot	of	differenced	price	data

This	is	a	stationary	series,	as	the	means	and	variance	seem	to	be	constant	across	time.	Also,	we	can	check
the	stationarity	using	the	Dickey-Fuller	test.	Thus	we	have	identified	the	value	of	d	for	our	ARIMA
model,	which	is	1.	Now	let	us	plot	the	autocorrelation	function	and	partial	autocorrelation	function	of	the
differenced	series	for	identifying	the	values	of	p	and	q.

The	acf	plot	is	given	by	executing	the	following	code:

>	acf(PriceDiff,	lag.max	=	10)	

	

Figure	4.11:	acf	plot	of	differenced	series

The	pacf	plot	is	given	by	executing	the	following	code:

>	pacf(PriceDiff,	lag.max	=	10)	

This	generates	the	pacf	plot	for	the	differenced	series:

	

Figure	4.12:	pacf	plot	of	differenced	series

This	clearly	shows	that	the	AR	and	MA	order	is	0	and	1	respectively	and	hence	the	best	candidate	model
is	ARIMA(0,1,1).

Now	let	us	estimate	the	coefficients	of	the	identified	ARIMA	model,	which	can	be	done	by	executing	the
following	code:

>PriceArima	<-	arima(PriceData,	order=c(0,1,1))	

>PriceArima	

This	generates	coefficients	of	the	identified	ARIMA	model	as	follows:

	

Figure	4.13:	Fitted	summary	of	ARIMA	(0,1,1)

Now	let	us	try	to	predict	the	forecast	and	plot	it,	which	can	be	done	by	executing	the	following	code:

>	library(forecast)	

>	FutureForecast<-forecast.Arima(PriceArima,h=5)	

>	FutureForecast	

This	generates	the	following	output:

	

Figure	4.14:	The	future	forecast	with	confidence	interval

Now	plot	the	forecasted	value	along	with	the	confidence	interval	by	executing	the	following	code:

>	plot.forecast(FutureForecast)	

This	generates	the	following	plot:

	

Figure	4.15:	Plot	of	forecasted	value	along	with	the	confidence	interval

Model	adequacy	can	be	checked	by	executing	the	following	code:

>Box.test(FutureForecast$residuals,	lag=20,	type="Ljung-Box")	

This	generates	the	following	output:

	

Figure	4.16:	Model	adequacy	check	statistics	for	fitted	model

Since	the	Pvalue	is	greater	than	0.05,	there	is	no	significant	autocorrelation	in	the	residuals	at	lags	1-20:

GARCH
GARCH	stands	for	generalized	autoregressive	conditional	heteroscedasticity.	One	of	the	assumptions
in	OLS	estimation	is	that	variance	of	error	should	be	constant.	However,	in	financial	time	series	data,
some	periods	are	comparatively	more	volatile,	which	contributes	to	rise	in	strengths	of	the	residuals,	and
also	these	spikes	are	not	randomly	placed	due	to	the	autocorrelation	effect,	also	known	as	volatility
clustering,	that	is,	periods	of	high	volatility	tend	to	group	together.	This	is	where	GARCH	is	used	to
forecast	volatility	measures,	which	can	be	used	to	forecast	residuals	in	the	model.	We	are	not	going	to	go
into	great	depth	but	we	will	show	how	GARCH	is	executed	in	R.

There	are	various	packages	available	in	R	for	GARCH	modeling.	We	will	be	using	the	rugarch	package.

Let	us	first	install	and	load	the	rugarch	package,	which	can	be	done	by	executing	the	following	code:

>install.packages("rugarch")	

>Library(rugarch)	

	>snp	<-	read.zoo("DataChap4SP500.csv",header	=	TRUE,	sep	=	",",format="%m/%d/%Y")	

Now	let	us	define	the	specs	for	the	GARCH	model	and	try	to	estimate	the	coefficients	by	running	the
following	code:

>	gspec.ru	<-	ugarchspec(mean.model=list(armaOrder=c(0,0)),	distribution="std")	

>	gfit.ru	<-	ugarchfit(gspec.ru,	snp$Return)	

>	coef(gfit.ru)	

This	gives	the	following	output:

	

	

	

Figure	4.17:	Summary	of	coefficients	estimate	of	GARCH

The	main	arguments	for	GARCH	modeling	are	as	follows:

Variance	model:	List	containing	the	variance	model	specifications,	especially	which	GARCH
model	to	use	and	what	should	be	the	orders	of	p	and	q	in	ARCH	(q)	and	GARCH	(p).
Mean	model:	List	containing	the	mean	model	specifications:	arma	order	the	autoregressive	(AR)
and	moving	average	(MA)	orders.
Distribution	model:	The	conditional	density	to	use	for	the	innovations.	Valid	choices	are	norm	for
the	normal	distibution,	snorm	for	the	skew-normal	distribution,	std	for	the	student	-t,	and	so	on.

Now	we	can	generate	our	forecast	according	to	our	requirement,	which	is	given	by	the	following	code:

>	FutureForecast=ugarchforecast(gfit.ru,	n.ahead	=	5)	

>	FutureForecast	

The	output	is	as	follows:

	

	

	

Figure	4.18:	GARCH	model	forecast

There	are	a	lot	of	options	in	the	GARCH	model	and	we	can	use	it	according	to	our	requirement.

EGARCH
EGARCH	stands	for	exponential	GARCH.	EGARCH	is	an	improved	form	of	GARCH	and	models	some
of	the	market	scenarios	better.

For	example,	negative	shocks	(events,	news,	and	so	on)	tend	to	impact	volatility	more	than	positive
shocks.

This	model	differs	from	the	traditional	GARCH	in	structure	due	to	the	log	of	variance.

Let	us	take	an	example	to	show	how	to	execute	EGARCH	in	R.	First	define	spec	for	EGARCH	and
estimate	the	coefficients,	which	can	be	done	by	executing	the	following	code	on	the	snp	data:

>	snp	<-	read.zoo("DataChap4SP500.csv",header	=	TRUE,	sep	=	",",format="%m/%d/%Y")	

>	egarchsnp.spec	=	

ugarchspec(variance.model=list(model="eGARCH",garchOrder=c(1,1)),	

+																								mean.model=list(armaOrder=c(0,0)))	

>	egarchsnp.fit	=	ugarchfit(egarchsnp.spec,	snp$Return)	

>	egarchsnp.fit	

>	coef(egarchsnp.fit)	

This	gives	the	coefficients	as	follows:

	

	

	

Figure	4.19:	Parameter	estimates	of	EGARCH

Now	let	us	try	to	forecast,	which	can	be	done	by	executing	the	following	code:

>	FutureForecast=ugarchforecast(egarchsnp.fit,	n.ahead	=	5)	

>	FutureForecast	

This	gives	the	following	output:

	

	

	

Figure	4.20:	Forecast	prediction	of	EGARCH

VGARCH
VGARCH	stands	for	vector	GARCH	or	multivariate	GARCH.	In	the	financial	domain,	the	assumption	is
that	financial	volatilities	move	together	over	time	across	assets	and	markets.	Acknowledging	this	aspect
through	a	multivariate	modeling	framework	leads	to	a	better	model	separate	univariate	model.	It	helps	in
making	better	decision	tools	in	various	areas,	such	as	asset	pricing,	portfolio	selection,	option	pricing,
and	hedging	and	risk	management.	There	are	multiple	options	in	R	for	building	in	multivariate	mode.

Let	us	consider	an	example	of	multivariate	GARCH	in	R	for	the	last	year	of	data	from	the	S&P500	and	DJI
index:

>install.packages("rmgarch")

>install.packages("PerformanceAnalytics")

>library(rmgarch)

>library(PerformanceAnalytics)

>snpdji	<-	read.zoo("DataChap4SPDJIRet.csv",header	=	TRUE,	sep	=	

",",format="%m/%d/%Y")

>garch_spec	=	ugarchspec(mean.model	=	list(armaOrder	=	c(2,1)),variance.model	=	

list(garchOrder	=	c(1,1),	model	=	"sGARCH"),	distribution.model	=	"norm")

>	dcc.garch_spec	=	dccspec(uspec	=	multispec(replicate(2,	garch_spec)),	dccOrder	

=	c(1,1),	distribution	=	"mvnorm")

>	dcc_fit=	dccfit(dcc.garch_spec,data	=	snpdji)

>	fcst=dccforecast(dcc_.fit,n.ahead=5)

>	fcst

This	gives	the	following	output:

	

Figure	4.21:	Future	prediction	of	multivariate	GARCH

Dynamic	conditional	correlation
Multivariate	GARCH	models,	which	are	linear	in	squares	and	cross	products	of	the	data,	are	generally
used	to	estimate	the	correlations	changing	with	time.	Now	this	can	be	estimated	using	dynamic
conditional	correlation	(DCC),	which	is	a	combination	of	a	univariate	GARCH	model	and	parsimonious
parametric	models	for	the	correlation.	It	has	been	observed	that	they	perform	well	in	a	variety	of
situations.	This	method	has	the	flexibility	of	univariate	GARCH	and	does	not	have	the	complexity	of
multivariate	GARCH.

Now	let	us	see	how	to	execute	DCC	in	R.

First	we	need	to	install	and	load	the	packages	rmgarch	and	PerformanceAnalytics.	This	can	be	done
by	executing	the	following	code:

install.packages("rmgarch")	

install.packages("PerformanceAnalytics")	

library(rmgarch)	

library(PerformanceAnalytics)	

Now	let	us	consider	returns	of	the	last	year	for	the	S&P	500	and	DJI	indexes	and	try	to	get	DCC	for	these
returns.

Now	let	us	set	the	specification	for	DCC	by	executing	the	following	code:

snpdji	<-	read.zoo("DataChap4SPDJIRet.csv",header	=	TRUE,	sep	=	

",",format="%m/%d/%Y")	

>	garchspec	=	ugarchspec(mean.model	=	list(armaOrder	=	c(0,0)),		

+																variance.model	=	list(garchOrder	=	c(1,1),		

+																model	=	"sGARCH"),	distribution.model	=	"norm")	

>		

>	dcc.garchsnpdji.spec	=	dccspec(uspec	=	multispec(replicate(2,	garchspec)),	

dccOrder	=	c(1,1),	distribution	=	"mvnorm")	

Now	let	us	fit	the	model,	which	can	be	done	by	executing	the	following	code:

>	dcc_fit	=	dccfit(dcc.garchsnpdji.spec	,	data	=	snpdji,	

fit.control=list(scale=TRUE))	

>	dcc_fit	

This	gives	the	following	output:

	

	

	

Figure	4.22:	Fitted	summary	of	DCC

Since	the	forecast	has	been	already	shown	in	the	most	topic,	there	is	no	point	discussing	it	again	here.

Questions
1.	 Please	give	an	example	of	converting	a	data	series	into	a	time	series	using	the	ts()	function.
2.	 How	are	zoo	and	xts	different	from	the	ts()	function?	Give	an	example	of	constructing	xts	and

zoo	objects.
3.	 How	do	you	read	a	file	using	zoo?
4.	 How	do	you	check	stationarity	in	time	series?
5.	 How	do	you	identify	an	AR(2)	model	in	R?
6.	 How	do	you	identify	an	MA(2)	model	in	R?
7.	 Provide	an	example	for	the	given	below	model	and	execute	it	in	R.

GARCH,

EGARCH,

VGARCH
8.	 How	do	you	identify	an	ARIMA(1,1,1)	model	in	R?
9.	 Provide	an	example	for	the	given	model	and	execute	it	in	R.

Summary
In	this	chapter,	we	have	discussed	how	to	decompose	a	time	series	into	its	various	components,	such	as
trend,	seasonality,	cyclicity,	and	residuals.	Also,	I	have	discussed	how	to	convert	any	series	into	a	time
series	in	R	and	how	to	execute	the	various	forecasting	models,	such	as	linear	filters,	AR,	MA,	ARMA,
ARIMA,	GARCH,	EGARCH,	VGARCH,	and	DCC,	in	R	and	make	forecast	predictions.

In	the	next	chapter,	different	concepts	of	trading	using	R	will	be	discussed,	starting	with	trend,	followed
by	strategy,	followed	by	pairs	trading	using	three	different	methods.	Capital	asset	pricing,	the	multi	factor
model,	and	portfolio	construction	will	also	be	discussed.	Machine	learning	technologies	for	building
trading	strategy	will	also	be	discussed.

Chapter	5.	Algorithmic	Trading
Algorithmic	trading	is	defined	as	the	buying	and	selling	of	financial	instruments	using	predefined	rules
called	algorithms.	Traders	use	predictive	modeling,	time	series	modeling,	and	machine	learning	to	predict
the	price,	return,	or	direction	of	movement	of	the	asset.

Algorithms	are	developed	by	quantitative	traders	or	quantitative	researchers	and	tested	on	historical	data.
Algorithms	go	through	rigorous	testing	before	they	are	used	for	live	trading.	Technical	indicator-based
trading	can	also	come	under	algorithm	trading	if	it	is	fully	automated.	However,	sometimes	quantitative
traders	also	use	fundamental	data	such	as	market	capitalization,	cash	flow,	debt	to	equity	ratio,	and	so	on
to	define	rules	for	algorithms.	People	are	free	to	use	any	technique	to	define	rules	for	algorithms.	Very
recently,	investment	or	trading	firms	have	started	to	dive	deep	into	machine	learning	methods	to	predict
price,	return,	or	direction	movement.

I	will	be	covering	machine	learning-based	trading	in	the	next	chapter.

In	this	chapter,	I	will	be	covering	some	trading	strategies	that	are	commonly	used	in	the	industry,	along
with	their	implementation.	Specifically,	I	will	cover	the	following	topics:

Momentum	or	directional	trading
Pairs	trading
Capital	asset	pricing	model
Multi	factor	model
Portfolio	construction

For	this,	I	will	require	specific	R	packages	such	as	quantmod,	tseries,	xts,	zoo,	and
PerformanceAnalytics,	which	you	can	install	using	the	following	command:

install.packages('package	name')

Once	you	have	installed	any	package,	you	should	load	it	into	the	workspace	to	use	its	functionalities,	and
for	that,	you	should	include	the	following	command	in	your	R	code:

library('package	name')

Momentum	or	directional	trading
Momentum	trading	is	trading	when	the	instrument	is	trending	up	or	down	or,	in	other	words,	continuation
in	the	trend	as	like	historical	winners	are	expected	to	be	winners	and	historical	losers	are	expected	to
lose.	You	bet	on	the	direction	of	the	instrument	and	you	aim	for	buying	at	a	low	price	and	selling	at	a	high
price.	I	will	not	cover	the	pros	and	cons	and	what	the	different	types	of	momentum	trading	strategies	are.
It	is	left	to	the	trader	to	devise	any	idea.	I	will	cover	how	to	implement	momentum	trading	rules	and
backtest	using	historical	data	in	R.	Stock	return	depends	on	various	factors,	and	later	in	this	chapter,	I	will
show	you	how	to	use	the	multifactor	model	which	explains	stock	return.

Let	me	start	with	simple	technical	indicators.

Technical	indicators	are	implemented	in	the	quantmod	package	so	I	will	be	using	quantmod	for	this:

>	library('quantmod')	

>getSymbols("^DJI",src="yahoo")	

[1]	"DJI"	

>	head(DJI)	

We	have	to	start	by	loading	the	quantmod	package	into	the	R	workspace	and	the	first	line	explains	how	to
do	it.	Next	we	extract	the	Dow	Jones	Index	(DJI)	data	from	the	Yahoo	repository.	The	data	consists	of
many	columns,	such	as	DJI.Open,	DJI.High,	DJI.Low,	DJI.Close,	and	so	on.	This	can	be	seen	using	the
head	(dji)	command.	The	next	line	shows	how	to	extract	only	close	prices	and	store	in	new
variabledji:

>dji<-	DJI[,"DJI.Close"]	

>	class(dji)	

[1]	"xts"	"zoo"	

The	preceding	line	shows	the	dji	class,	which	is	xts,	and	zoo	means	dji	is	in	time	index	format,	so	I
used	the	following	command	to	extract	dji	data	between	two	specified	dates:

>dji<-	dji[(index(dji)	>=	"2010-01-01"	&	index(dji)	<=	"2015-12-31"),]	

Delt()	converts	the	raw	closing	prices	to	return	and	by	default	it	is	one	period	return:

>ret_dji<-	Delt(dji,k=1)	

You	can	use	Delt()	to	calculate	any	period	return	using	the	parameter	k.	However,	there	is	an	option	to
calculate	the	normal	return	or	logarithmic	return	of	a	stock	price	as	well.	In	the	following	command,	I
used	k=1:3,	which	means	we	are	calculating	the	dji	return	for	lag	1	to	3	incremented	by	1:

>ret_dji<-	Delt(dji,k=1:3)

You	can	see	the	output	of	the	preceding	command	using	head().	In	the	following	result,	Delt.1,	Delt.2,
and	Delt.3	are	returned	for	lag	1,	2,	and	3	respectively:

>	head(ret_dji)	

																	Delt.1								Delt.2															Delt.3	

2010-01-04										NA											NA																			NA	

2010-01-05					-0.0011281628					NA																			NA	

2010-01-06						0.0001570331		-0.0009713069											NA	

2010-01-07						0.0031380432			0.0032955691						0.002163688	

2010-01-08						0.0010681840			0.0042095792						0.004367273	

2010-01-11						0.0043133342			0.0053861256						0.008541071	

The	preceding	output	has	a	few	NAs,	which	are	because	of	data	starting.	For	the	first	column,	the	first
point	does	not	have	any	reference	value	to	calculate	the	return.	So	the	first	point	will	be	NA	and	then	from
the	second	point	onward,	we	get	return	values.	In	the	second	column,	we	have	to	calculate	the	return	of
current	data	points	from	two	data	points	before	it,	which	is	not	possible	for	the	first	two	data	points,
leaving	first	two	NAs,	and	on	similar	lines,	three	NAs	in	the	third	column.

The	function	Delt()	has	a	few	more	parameters	and	each	parameter	has	its	type,	which	is	specific	to	this
function.	Sometimes	it	is	necessary	to	look	into	the	output,	what	kind	of	return	it	generates,	and	in	which
format	it	generates	output.	If	you	would	like	to	know	more	about	the	function,	and	its	parameters	along
with	examples,	you	can	do	so	using	the	following	command,	which	will	open	another	window	explaining
all	the	details	about	this	function:

>	?	Delt

The	Dow	Jones	Index	closing	price	in	Figure	5.1	shows	a	clear	trend.	We	have	to	define	a	set	of
indicators,	rules	which	are	able	to	generate	signals	at	appropriate	times,	and	have	the	potential	to
generate	a	positive	return	on	investment.	It	is	very	important	to	understand	the	generalization	capacity	of
the	model	and	for	that	we	should	divide	the	dataset	in	two	smaller	datasets,	one	dataset	consisting	of	70-
80%	of	the	data	and	the	second	dataset	consisting	of	the	remaining	20-30%	of	the	data.	The	first	dataset	is
called	the	in-sample	dataset	and	the	second	is	called	the	out-sample	dataset:

	

	

	

Figure	5.1:	Dow	Jones	Index	closing	price	and	return	series

To	backtest	our	strategy	idea	and	its	generalization	power,	we	have	to	divide	the	dataset	into	two	smaller
datasets	called	in-sample	and	out-sample	datasets.	Here	I	am	going	to	define	four	dates.	in_sd	defines	the
date	by	which	the	in-sample	data	starts,	and	in_ed	the	in-sample	end	date.	Similarly,	out_sd	and	out_ed
are	defined	for	the	out-sample	start	and	end	dates.	The	dates	are	defined	in	order	as	our	data	is	in	time
series	format	and	we	are	interested	in	building	a	model	on	historical	data	which	would	be	used	on	real-
time	data,	that	is,	a	dataset	which	has	dates	later	than	historical	data:

>in_sd<-	"2010-01-01"	

>in_ed<-	"2014-12-31"	

>out_sd<-	"2015-01-01"	

>out_ed<-	"2015-12-31"	

The	variables	in_dji	and	in_ret_dji	contain	the	Dow	Jones	Index	closing	price	and	return
respectively	within	the	in-sample	dates	defined	previously,	and	out_dji	and	out_ret_dji	contain	the
Dow	Jones	Index	closing	price	and	return	data	respectively	for	the	out-sample	dates	defined	previously:

>in_dji<-	dji[(index(dji)	>=	in_sd&	index(dji)	<=	in_ed),]	

>in_ret_dji<-	ret_dji[(index(ret_dji)	>=	in_sd&	index(ret_dji)	<=	in_ed),]	

>out_dji<-	dji[(index(dji)	>=	out_sd&	index(dji)	<=	out_ed),]	

>out_ret_dji<-	ret_dji[(index(ret_dji)	>=	out_sd&	index(ret_dji)	<=	out_ed),]	

The	purpose	of	creating	an	in-sample	and	out-sample	is	logical	and	helps	to	control	human	bias	towards
parameter	estimation.	We	should	use	in-sample	data	to	backtest	our	strategy,	estimate	the	optimal	set	of
parameters,	and	evaluate	its	performance.	The	optimal	set	of	parameters	has	to	be	applied	on	out-sample
data	to	understand	the	generalization	capacity	of	rules	and	parameters.	If	the	performance	on	out-sample
data	is	pretty	similar	to	in-sample	data,	we	assume	the	parameters	and	rule	set	have	good	generalization
power	and	can	be	used	for	live	trading.

I	will	use	moving	average	convergence	divergence	(MACD)	and	Bollinger	band	indicators	to	generate
automated	trading	signals.	MACD	and	Bollinger	band	indicators	are	calculated	using	the	following	two
lines	of	code.	I	used	the	same	parameter	values	in	both	of	these	functions;	however,	you	can	use	the
parameters	which	you	think	are	best	for	your	dataset.	The	output	variable	macd	contains	the	MACD
indicator	and	its	signal	value;	however,	the	output	variable	bb	contains	the	lower	band,	average,	upper
band,	and	percentage	Bollinger	band:

>macd<-	MACD(in_dji,	nFast	=12,	nSlow	=	26,	nSig	=	9,maType="SMA",	percent	=	FALSE)					

>	bb	<-	BBands(in_dji,	n	=	20,	maType="SMA",	sd	=	2)	

The	first	line	creates	the	variable	signal	and	initializes	it	with	NULL.	In	the	second	line,	I	generated	a	buy
signal	(1)	when	dji	is	above	the	upper	Bollinger	band	and	the	macd	value	is	above	its	macd-signal
value;	a	sell	signal	(-1)	when	dji	is	down	the	lower	Bollinger	band	and	macd	is	less	than	its	macd-
signal	value;	and	out	of	market	when	the	signal	is	0:

>	signal	<-	NULL	

>	signal	<-	ifelse(in_dji>	bb[,'up']	&macd[,'macd']	

>macd[,'signal'],1,ifelse(in_dji<	bb[,'dn']	&macd[,'macd']	<macd[,'signal'],-1,0))	

I	had	generated	for	both	long	and	short;	however,	you	can	implement	a	long	only	or	short	only	strategy	as
well.	You	can	also	modify	this	signal	generation	mechanism	and	use	any	other	exit	criterion	you	want.	We
haven't	included	any	transaction	cost	and	slippage	cost	to	calculate	its	performance	as	none	of	the
strategies	are	directly	for	trading.	These	strategies	are	used	just	to	show	the	implementation	mechanism:

>trade_return<-	in_ret_dji*lag(signal)	

Trade	return	is	calculated	using	the	return	of	the	Dow	Jones	Index	and	the	previous	day	signal.	I	will	use
the	package	PerformanceAnalytics	to	calculate	various	matrices	of	strategy	performance.

First	you	should	load	this	package	into	the	R	workspace:

>	library(PerformanceAnalytics)	

>cumm_ret<-	Return.cumulative(trade_return)	

>annual_ret<-	Return.annualized(trade_return)	

Cumulative	and	annualized	return	of	the	strategy	can	be	calculated	using	the	preceding	two	lines	of	code.
Chart.PerformanceSummary	plots	cumulative	and	daily	return	along	with	drawdown	at	a	given	point	of
time,	as	can	be	seen	in	Figure	5.2:

>charts.PerformanceSummary(trade_return)	

	

	

	

Figure	5.2:	Cumulative	return,	daily	return,	and	drawdown	of	strategy

To	understand	more	about	the	performance	of	trade	returns,	you	have	to	use	the	summary()	command.
summary()	will	give	the	minimum,	first	quartile,	median,	mean,	third	quartile,	and	maximum	of	all	trade
return	on	a	daily	basis.	The	variable	trade_return	has	a	few	NAs	as	well	and	summary()	shows	the
number	of	NAs	as	well.	In	the	following	line	of	code,	we	first	convert	trade_return	to	a	time	series
object	because	it	generates	output	in	a	specific	format.	The	output	shows	minimum,	first	quartile,	median,
third	quartile,	maximum,	and	NA.	NA	has	the	value	20,	which	means	trade_return	has	20NAs:

>	summary(as.ts(trade_return))	

					Min.			1st	Qu.				Median						Mean			3rd	Qu.						Max.						NA's		

-0.039770		0	0	0.000062		0	0.055460								20		

The	following	are	a	few	commands	to	calculate	the	performance	of	the	strategy	on	in-sample	trade	return.

The	first	command	is	to	calculate	the	maximum	drawdown	of	trade	return	throughout	the	trading	period
and	we	can	see	that	0.1173028	means	the	maximum	drawdown	is	11.73%.	The	second	and	third
commands	are	to	calculate	the	daily	and	annualized	standard	deviation	for	trade	returns.	Next	is	the	VaR
calculation	for	strategy	return	and	the	last	two	commands	are	to	calculate	the	Sharpe	ratio	of	the	strategy
on	a	daily	and	annualized	basis	respectively.

The	Sharpe	ratio	on	a	daily	basis	is	0.01621421	and	annualized	is	0.2289401.	The	Sharpe	ratio	has	two
parameters:	Rf	and	FUN.	Rf	is	for	risk-free	rate	of	interest	and	FUN	is	for	the	denominator.	In	the	Sharpe
ratio	calculation,	I	used	FUN=StdDev;	it	could	also	be	VaR:

>maxDrawdown(trade_return)	

0.1173028	

>StdDev(trade_return)	

StdDev0.00379632	

>StdDev.annualized(trade_return)	

Annualized	Standard	Deviation								0.06026471	

>VaR(trade_return,	p	=	0.95)	

>SharpeRatio(as.ts(trade_return),	Rf	=	0,	p	=	0.95,	FUN	=	"StdDev")	

StdDev	Sharpe	(Rf=0%,	p=95%):	0.01621421	

>SharpeRatio.annualized(trade_return,	Rf	=	0)	

Annualized	Sharpe	Ratio	(Rf=0%)									0.2289401	

Now,	if	we	find	the	performance	is	good	for	the	in-sample	data	then	we	can	use	this	strategy	on	the	out-
sample	data	and	calculate	all	the	matrices	for	the	out-sample	data	and	check	for	the	consistency	in	strategy
performance.	The	next	two	lines	are	to	calculate	the	moving	average,	and	convergence	divergence	and
Bollinger	band	for	out	of	sample	data:

>macd<-	MACD(out_dji,	nFast	=	7,	nSlow	=	12,	nSig	=	15,maType="SMA",	percent	=	

FALSE)	

>	bb	<-	BBands(out_dji,	n	=	20,	maType="SMA",	sd	=	2)	

Next	I	use	these	out-sample	indicators	and	generate	signals	like	we	generated	for	the	in-sample	data:

>signal	<-	NULL	

>	signal	<-	ifelse(out_dji>	bb[,'up']	&macd[,'macd']	

>macd[,'signal'],1,ifelse(out_dji<	bb[,'dn']	&macd[,'macd']	<macd[,'signal'],-1,0))		

Trade	return	and	all	its	relevant	metrics	for	out-sample	data	are	calculated	using	the	following	lines	of
code.	These	are	like	the	in-sample	data:

>trade_return<-	out_ret_dji*lag(signal)	

>cumm_ret<-	Return.cumulative(trade_return)	

>annual_ret<-	Return.annualized(trade_return)	

>charts.PerformanceSummary(trade_return)	

>maxdd<-	maxDrawdown(trade_return)	

>sd<-	StdDev(trade_return)	

>sda<-	StdDev.annualized(trade_return)	

>VaR(trade_return,	p	=	0.95)			

>SharpeRatio(as.ts(trade_return),	Rf	=	0,	p	=	0.95,	FUN	=	"StdDev")	

>SharpeRatio.annualized(trade_return,	Rf	=	0)	

I	implemented	this	strategy	for	one	particular	time	series,	that	is,	the	Dow	Jones	Index	(DJI);	however,
you	can	test	this	same	strategy	on	other	stocks	as	well	and	understand	strategy	behavior	across	the
universe	of	stocks.	If	you	find	the	strategy	performs	better	on	most	of	the	stocks,	it	shows	consistency	in
the	idea	and	it	might	work	well	on	real-time	trading	as	well.	It's	very	important	to	note	here	that	even	if
one	particular	strategy	works	well	on	a	few	stocks,	we	should	not	forget	to	check	the	variance	of	the
portfolio.	Let	me	show	you	an	example.	I	calculate	the	variance	of	the	DJI	time	series	return:

>var(ret_dji,na.rm=T)	

Delt.1.arithmetic						8.093402e-05	

In	the	preceding	code,	I	used	na.rm=T	to	remove	Nan	in	the	time	series.	Now	I	import	another	symbol,
which	is	S&P	500,	into	the	workspace.	The	next	line	of	code	imports	S&P	500	into	the	workspace:

>getSymbols("GSPC",src="yahoo")	

Now	I	extract	only	the	closing	price	of	S&P	500	and	refine	it	between	two	dates.

Next	I	calculate	the	return	of	S&P	500:

>snp<-	GSPC[,"GSPC.Close"]	

>snp<-	snp[(index(snp)	>=	"2010-01-01"	&	index(snp)	<=	"2015-12-31"),]	

>ret_snp<-	Delt(snp)	

I	also	calculate	the	variance	of	the	S&P	500	series	return:

>var(ret_snp,na.rm=T)	

Delt.1.arithmetic						8.590805e-05	

Now	I	combine	both	time	series	returns	and	calculated	variance	of	sum	of	two	returns:

>var(ret_dji	+	ret_snp,na.rm=T)	

Delt.1.arithmetic							0.000218383	

We	find	the	following:

Variance(ret_dji	+	ret_snp)	≠	Variance(ret_dji)	+	Variance(ret_snp)	

As	we	can	see,	0.000218383	≠8.093402e-05	+	8.590805e-05.

What	causes	this	difference	is	very	important	to	understand.	If	we	go	back	to	the	basics	of	probability
theory,	we	find	the	following:

Variance	(X	+	Y)	=	Variance(X)	+	Variance(Y)	+	2		Covariance(X,Y)					

(5.1)	

Variance	(X	+	Y)	=	Variance(X)	+	Variance(Y)	+	2		ρσXσY................(5.2)	

Here,	ρ	is	the	correlation	between	X	and	Y;	σX	is	the	standard	deviation	of	X;	and	σY	is	standard	deviation
of	Y.

We	calculate	the	standard	deviation	of	ret_dji,	ret_snp	and	correlation	between	ret_dji	and	ret_snp
using	the	following	commands:

>sd(ret_dji,na.rm=T)	

[1]	0.00926866	

>sd(ret_snp,na.rm=T)	

[1]	0.008996333	

>cor(ret_dji[!is.na(ret_dji)],ret_snp[!is.na(ret_snp)])	

																		Delt.1.arithmetic	

Delt.1.arithmetic									0.3090576	

The	correlation	between	ret_dji	and	ret_snp	is	0.3090576.	Now	we	put	these	values	into	the	equation
5.2	and	you	will	see	both	sides	are	equal.	It	means	if	two	stocks	are	positively	correlated,	they	cause	an
increase	in	the	variance	of	the	portfolio	as	compared	to	the	sum	of	variance	of	two	individual	stocks.	If
we	are	able	to	pick	two	stocks	which	are	uncorrelated,	that	is,	correlation	=	0,	then	the	variance	of	the
portfolio	would	be	the	linear	sum	of	two	individual	securities;	or	if	we	manage	to	pick	two	stocks	with
negative	correlation	then	the	variance	of	the	portfolio	would	be	less	than	the	sum	of	two	individual
stocks.

So	we	have	to	look	at	the	correlation	matrix	of	the	stocks	in	the	portfolio	to	figure	out	which	stocks	would
help	to	minimize	risk.	As	we	have	only	two	stocks	in	the	portfolio,	I	created	port_ret	as	a	data	frame
which	consists	of	NAs,	number	of	rows	same	as	the	number	of	data	points,	and	two	columns:

>port_ret<-	data.frame(matrix(NA,dim(ret_dji)[1],2))	

The	next	two	commands	copy	ret_dji	into	the	first	column	and	ret_snp	into	the	second	column	of	the
data	frame:

>port_ret[,1]	<-	ret_dji	

>port_ret[,2]	<-	ret_snp	

Now	we	can	calculate	the	correlation	matrix	of	stocks	in	the	portfolio.	The	following	code	calculates	the
correlation	of	stock	1	with	stock	2:

>cor(port_ret)	

							X1											X2	

X1					1												NA	

X2					NA											1	

The	preceding	correlation	matrix	has	NAs	and	these	are	because	the	port_ret	data	frame	has	NA
somewhere,	so	we	have	to	remove	NA	from	the	data	frame	and	is.na()	helps	us	to	get	rid	of	this	NA.	The
following	code	filters	port_ret	from	NA	and	then	calculates	the	correlation	matrix:

>port_ret<-	port_ret[!is.na(port_ret[,1]),]	

>cor(port_ret)	

	

													X1																		X2	

X1								1.0000000											0.3090576	

X2								0.3090576											1.0000000	

As	correlation	between	two	stocks	is	order	independent	that	is	the	reason	that	diagonal	elements	are

same.	It	is	rarely	possible	to	find	a	pair	of	stocks	which	are	uncorrelated	or	perfectly	correlated.	More
negative	correlation	shows	better	diversification.	As	the	correlation	increases,	diversification	becomes
less	relevant,	as	the	variance	of	the	portfolio	increases	with	the	increase	in	the	correlation.	That	is	the
reason	correlation	is	one	of	the	most	important	criteria	to	select	stocks	in	a	portfolio	and	to	control	the
risk	of	the	portfolio.

Pairs	trading
You	are	familiar	with	the	concept	of	diversification.	For	diversification,	we	have	to	choose	negative
correlated	stocks;	however,	in	pairs	trading,	we	can	choose	stocks	with	positive	correlation	and	enter
opposite	trades	in	both	of	the	stocks.	Enter	a	buy	position	for	the	stock	which	is	undervalued	and	short	the
stock	which	is	overvalued.

The	variance	of	the	X	-	Y	portfolio	is	defined	as	follows:

Variance	(X	-Y)	=	Variance(X)	+	Variance(Y)	-	2	ρ	σXσY................(5.3)	

Pairs	trading	is	a	market-neutral	strategy,	as	the	difference	in	two	stocks	is	uncorrelated	or	correlated
close	to	zero	with	the	overall	market.	I	will	show	you	how	to	start	pairs	trading	using	the	distance
approach.	I	will	use	same	two	time	series,	Dow	Jones	Index,	and	S&P	500	for	pairs	trading	and	explain
how	the	distance-based	approach	can	be	implemented	in	R.

Distance-based	pairs	trading

Different	time	series	might	have	different	scaling	and	so	you	first	normalize	the	series.	I	did	it	using	an
initial	investment	of	1	and	then	taking	cumulative	return	of	this	investment:

>ret_dji[1]	<-	1

>ret_snp[1]	<-	1

The	following	commands	calculate	the	cumulative	return	of	the	investment	which	was	started	at	1.	This
way,	we	can	track	the	relative	performance	of	series	one	against	the	second	series	and	the	last	command
is	to	calculate	the	difference	between	the	two	series:

>norm_dji<-	apply(ret_dji,2,cumprod)

>norm_snp<-	apply(ret_snp,2,cumprod)

	

	

	

Figure	5.3:	Normalized	prices	for	Dow	Jones	Index	and	S&P	500

The	formula	to	calculate	cumulative	return	is	defined	here:

(Norm_dji)t	=		(norm_dji)t-1	*	(1	+	rt)	

Now	I	used	the	plot()	command	to	plot	normalized	prices	norm_dji	and	type="l",	help	to	connect	all
points	in	the	graph	and	generate	a	line	graph.	You	will	get	dots	if	you	do	not	use	this	and	ylim=c(0.5,2)
is	used	to	scale	the	vertical	axis.	I	also	used	lines()	to	plot	another	series	on	the	same	graph	so	that	we
can	at	least	look	at	both	series	in	the	same	figure.	ylab	is	for	labeling	along	the	y	axis:

>plot(norm_dji,type="l",ylim=c(0.5,2)	,ylab="Normalized_Price")	

>lines(norm_snp,col="red")	

>legend('topright',c("DJI","S&P	500")	,		lty=1,	col=c('black','red'),	bty='o',	

cex=1)	

The	legend	command	helps	to	place	the	box	at	the	top-right	corner	in	the	plot	which	mentioned	DJI	and
S&P500	series	are	plotted.	The	parameter	lty	is	used	for	the	type	of	line	in	the	plot;	lty=1	means	solid
line.	The	next	plot	is	used	to	plot	the	difference	between	normalized	prices.

When	you	look	at	this	plot,	you	will	realize	that	the	distance	between	both	series	is	converging	and
diverging	before	index	500	and	after	that,	diverging	continuously.	As	this	pair	doesn't	converge	frequently,

you	should	not	consider	using	it	for	pairs	trading.	You	have	to	find	another	pair	which	diverge	and
converge	frequently	on	historical	data,	which	implies	some	similarity	in	both	series	fundamentals	on
historical	data.

I	chose	Exxon	Mobil	(XOM)	and	Chevron	corporation	(CVX)	for	this.	Figure	5.4	shows	normalized
price	series	and	their	difference	along	with	the	signals	generated	for	trading.

Normalized	prices	are	not	going	very	far	from	each	other	for	a	long	time,	as	can	be	seen	in	Figure	5.4.
This	pair	seems	to	be	a	good	member	for	distance	based	pairs	trading.

We	calculate	norm_xom	and	norm_cvx	like	we	calculated	norm_dji	and	norm_snp	and	plot	these	using
the	following	commands:

>	class(norm_xom)

[1]	"matrix"

>	class(norm_cvx)

[1]	"matrix"

You	have	to	look	into	the	class	of	these	two	variables.	Both	of	these	are	matrices,	as	can	be	seen	above,
and	this	has	to	be	an	xts,	zoo	object.	So	the	next	thing	you	have	to	do	is	to	convert	these	matrix	objects
into	an	xts,	zoo	object:

norm_xom<-	xts(norm_xom,index(ret_xom))	

norm_cvx<-	xts(norm_cvx,index(ret_cvx))	

xts()	does	this	job	and	converts	both	of	these	into	xts	objects:

>par(mfrow=c(3,1))	

>	plot(norm_xom,type="l",ylim=c(0.5,2)	,ylab="Normalized_Price")	

>	lines(norm_cvx,col="red")	

>	legend('topright',c("XOM","CVX")	,		lty=1,	col=c('black','red'),	bty='o',	cex=1)	

>	diff	=	norm_xom	-	norm_cvx	

>	plot(diff,type="l",ylab="Normalized_Price_difference")	

Mean,	standard	deviation	of	the	normalized	price	difference	is	calculated	as	follows:

>	me	<-	mean(diff)	

>std<-	sd(diff)	

	

	

	

Figure	5.4:	Normalized	price	series,	difference,	and	trading	signals

The	upper	(ub)	and	lower	bounds	(lb)	of	the	difference	series	can	be	calculated	by	adding	and
subtracting	n	times	standard	deviation	from	the	mean:

>ub<-	me	+	n	*	std	

>lb<-	me		-	n*std	

Finding	optimal	parameter	values	for	n	is	not	straightforward.	We	either	have	to	use	the	hit	and	trial
method	to	come	up	with	the	optimal	value	of	n	or	use	a	grid-based	parameter	optimizer	to	find	the	optimal
value.

As	an	example,	here	I	used	n	=	1	just	for	the	sake	of	demonstration.	A	buy	signal	(1)	is	generated	when
the	difference	value	is	lower	than	the	lower	band,	and	a	short	signal	(-1)	is	generated	when	the	difference
is	above	the	upper	band;	otherwise	the	signal	is	hold	(0).

When	the	difference	value,	that	is,	the	spread,	is	above	the	upper	band,	we	speculate	it	will	return	to	its
mean	value	as,	historically,	it	has	been	there	most	of	the	time.	Similarly,	when	the	spread	is	below	the
lower	band,	even	in	this	case,	we	speculate	it	will	return	to	its	mean	value:

>	n	<-	1	

>	signal	<-	ifelse(diff	>	ub,1,ifelse(diff	<	lb,-1,0))	

Here	I	used	the	full	time	series	of	difference	values	to	calculate	mean	and	standard	deviation,	as	can	be
seen	previously	where	I	calculated	me	and	std.	You	can	also	calculate	mean	and	standard	deviation
dynamically	on	a	rolling	window.	This	dynamic	mean	and	standard	deviation	will	change	signal
generation,	and	entry	and	exit	will	be	even	more	frequent.

Dynamic	mean	and	standard	deviations	can	be	calculated	using	rollapply().	You	should	define	dataset,
length,	and	function	in	rollapply():

>me_dynamic<-		rollapply(diff,10,mean)	

>std_dynamic<-		rollapply(diff,10,sd)	

The	plot()	function	plots	the	signal	as	presented	in	Figure	5.4.	A	non-zero	signal	value	shows	our
participation	in	the	market	and	zero	means	we	are	not	participating	in	the	market:

>plot(signal,	type="l")	

Difference	in	normalized	prices	is	also	called	spread.	As	we	are	generating	signals	using	spread,	we	will
be	trading	spread	instead	of	individual	stock.	So,	we	have	to	clearly	understand	what	is	meant	by	spread
trading.	When	I	say	buy,	it	means	I	am	buying	spread,	which	implies	long	position	on	XOM	and	short
position	on	CVX	or	short	on	XOM	and	long	on	CVX	when	we	have	short	signal.	The	following	two	lines
calculate	the	spread	and	trade	return:

>spread_return<-	ret_xom	-	ret_cvx	

>trade_return<-	spread_return*lag(signal)	-	cost	

The	variable	named	spread_return	is	the	return	spread,	trade_return	is	the	return	of	trade,	and	cost	is
the	expenses	to	carry	out	trading	activities;	it	includes	transaction	cost,	brokerage	cost,	and	slippage.

The	purpose	of	this	book	is	only	to	teach	you	R	coding,	not	to	generate	profitable	trading	ideas.	So,	I
considered	the	cost	as	0,	but	you	have	to	incorporate	the	appropriate	cost	while	backtesting	your	ideas
and	putting	money	into	a	real	account.

Now	we	apply	performance	measure	commands	to	extract	a	performance	summary:

>	summary(trade_return)	

						Min.				1st	Qu.					Median							Mean				3rd	Qu.							Max.		

-0.0330000		0.0000000		0.0000000		0.0002135		0.0000000		0.0373400	

All	key	performance	indicators	can	be	calculated	using	the	following	commands.	All	these	commands

have	already	been	used	in	the	Momentum	trading	section:

>cumm_ret<-	Return.cumulative(trade_return)	

>annual_ret<-	Return.annualized(trade_return)	

>charts.PerformanceSummary(trade_return)	

>maxdd<-	maxDrawdown(trade_return)	

>sd<-	StdDev(trade_return)	

>sda<-	StdDev.annualized(trade_return)	

>VaR(trade_return,	p	=	0.95)			

>SharpeRatio(as.ts(trade_return),	Rf	=	0,	p	=	0.95,	FUN	=	"StdDev")	

>SharpeRatio.annualized(trade_return,	Rf	=	0)	

Figure	5.5	shows	cumulative	performance,	daily	return,	and	drawdown	on	a	day-to-day	basis	for	this
distance-based	pairs	trading	strategy:

	

	

	

Figure	5.5:	Cumulative	return	of	strategy,	return,	and	drawdown	on	a	daily	basis

Here	I	demonstrated	an	approach	to	implement	the	distance-based	pairs	trading	model	practically.	You
should	segregate	the	data	into	in-sample	and	out-sample	datasets.	Optimization	of	parameters	should	be
done	using	in-sample	data	and	validate	those	parameters	for	out-sample	data.	I	have	already	shown	you
this	approach	in	the	Momentum	trading	section.

Correlation	based	pairs	trading

Another,	traditional	way	to	trade	in	pairs	is	correlation.	You	have	to	pick	a	pair	which	is	highly
correlated	historically	and	the	spread	of	the	pair	is	least	correlated	with	market	benchmark.	A	trading
opportunity	occurs	whenever	you	see	correlation	strength	weakens.	This	is	also	on	the	premise	of	mean
reversion	and	traders	bet	on	correlation	reversion	to	its	mean	whenever	they	see	significant	deviation	in
correlation	from	its	mean	at	least	by	n	times	standard	deviation.

A	market-neutral	strategy	can	be	implemented	in	two	different	ways:

Beta	neutral
Dollar	neutral

Beta	neutrality	means	the	beta	of	the	spread	is	close	to	zero;	this	can	be	reached	by	choosing	two	stocks
or	instruments	whose	betas	are	almost	same.	However,	dollar	neutral	means	you	are	only	a	little	exposed
to	the	market	as	investment	in	long	stock	is	offset	by	the	amount	you	receive	on	short	trade.

Practically,	even	if	we	are	little	exposed	to	the	market	doesn't	mean	that	we	have	no	risk	or	little	risk.
Risk	has	to	be	managed	properly	to	make	a	profitable	trade.	Here	I	am	going	to	show	you	how	to
implement	the	correlation	based	pairs	trading	model.

First	of	all,	you	have	to	create	a	data	frame	which	consist	of	returns	of	XOM	and	CVX	as	I	am	using
XOM	and	CVX	as	my	pair	of	stocks.

The	first	column	is	for	XOM	and	the	second	is	for	CVX	returns:

>data	<-	data.frame(matrix(NA,dim(ret_xom)[1],2))	

>data[,1]	<-	ret_xom	

>data[,2]	<-	ret_cvx	

>	class(data)	

[1]	"data.frame"	

The	type	of	this	can	be	checked	using	class()	and	you	see	that	the	data	is	of	data.frame	type.	You	have
to	convert	it	to	an	xts	object	and	this	can	be	done	using	the	following	code:

>	data	<-	xts(data,index(ret_xom))	

>	class(data)	

[1]	"xts"	"zoo"	

Now	you	can	check	the	type	of	the	data;	it	is	of	type	xts,	zoo.	Next,	I	created	a	function	named
correlation,	with	one	single	parameter	x,	which	calculates	the	correlation	between	the	first	and	second
columns	of	x	and	returns	the	correlation:

>correlation	<-	function(x)		

{	

									result	<-	cor(x[,1],x[,2])	

									return	(result)	

}	

I	used	rollapply()	which	does	calculations	on	a	rolling	window	basis	as	per	the	function	rolling
window	length	defined	in	this	function.	Here	I	supplied	four	parameters	to	this:	the	first	parameter	is	the
data	which	is	used	for	calculation,	the	second	for	window	length,	the	third	for	the	function	to	be	used	for
calculation,	and	the	fourth	to	direct	the	function	whether	calculation	should	on	done	on	each	column
separately.

I	used	data	length	as	252,	the	function	is	correlation	which	has	been	defined	above,	and
by.column=FALSE,	which	means	this	function	is	not	applied	on	columns	separately.

So	this	keeps	on	moving	and	using	the	last	10	data	points	to	calculate	correlation:

>corr<-	rollapply(data,252,correlation	,by.column=FALSE)		

The	strategy	continuously	monitors	the	performance	of	two	historically	correlated	securities.	When	the
correlation	between	the	two	securities	temporarily	weakens,	that	is,	one	stock	moves	up	while	the	other
moves	down,	the	pairs	trade	would	be	to	short	the	outperforming	stock	and	to	long	the	underperforming
one,	betting	that	the	spread	between	the	two	would	eventually	converge.

The	divergence	within	a	pair	can	be	caused	by	temporary	supply/demand	changes,	large	buy/sell	orders
for	one	security,	reaction	for	important	news	about	one	of	the	companies,	and	so	on.

Figure	5.6	shows	the	correlation	between	XOM	and	CVX	returns	at	rolling	length	252.	You	can	see	that
almost	every	time,	correlation	is	over	0.6.	It	shows	this	pair's	high	correlation	persists	almost	every	day:

	

	

	

Figure	5.6:	Correlation	between	returns	of	XOM	and	CVX

Normally,	correlation	greater	than	0.8	is	considered	as	strong	correlation	and	less	than	0.5	as	weak
correlation.	You	also	need	to	calculate	the	hedge	ratio	of	XOM	and	CVX,	which	can	be	calculated	by
dividing	the	XOM	price	and	CVX	price:

>hedge_ratio<-		xom		/	cvx	

Then	you	have	to	calculate	the	mean	and	standard	deviation	of	the	hedge	ratio	and	upper	and	lower
bounds.	In	the	distance	based	model,	I	presented	a	technique	to	use	static	mean	and	standard	deviation;
however,	in	this	section,	I	am	presenting	rolling-window-based	mean	and	standard	deviation	for	the
calculation	of	bounds.	As	the	mean	and	standard	deviation	will	be	function	of	time	so	the	upper	and	lower
bounds.	I	used	rollapply()	to	calculate	the	rolling	mean	and	standard	deviation	of	spread	for	every	14
data	points:

>roll_me<-	rollapply(hedge_ratio,14,mean)

>roll_std<-	rollapply(hedge_ratio,14,sd)

>	n	<-	1

>roll_ub<-	roll_me	+	n	*	roll_std

>roll_lb<-	roll_me	-	n	*	roll_std

If	you	look	at	preceding	two	commands,	you	will	see	the	parameter	n,	which	is	arbitrary	and	should	be

optimized.	Once	you	have	bounds,	you	should	go	for	signal	generation	and	this	can	be	done	using	the
following	code:

>	signal	<-	NULL

>	signal	<-	ifelse(hedge_ratio>	roll_ub,-1,ifelse(hedge_ratio<	roll_lb,1,0))

>lagsignal<-	Lag(signal,1)

>	signal	<-	ifelse(lagsignal	==	-1	&hedge_ratio>	roll_me,

-1,ifelse(lagsignal	==	1	&hedge_ratio<	roll_me,1,0))

It	generates	a	short	signal	(-1)	when	the	hedge	ratio	is	over	the	upper	band	and	generates	a	buy	signal	(1)
when	the	hedge	ratio	is	down	the	lower	band.	Then,	calculate	the	signal	at	lag	1	and	use	it	to	generate	an
exit	signal	when	the	hedge	ratio	crosses	the	rolling	mean.	Short	signal	implies	short	1	unit	of	XOM	and
long	hedge	ratio	time	CVX;	however,	buy	signal	implies	long	1	unit	on	XOM	and	short	hedge	ratio	time
CVX.	You	should	use	the	following	commands	to	calculate	spread	return	and	trade	return:

>spread_return<-	ret_xom	-	ret_cvx

>trade_return<-	spread_return*lag(signal)	-	cost

Once	you	have	done	that,	you	should	analyze	the	quality	of	these	signals,	so	you	need	to	calculate	all
metrics	of	trade	return,	which	can	be	calculated	using	the	commands	mentioned	in	earlier	sections,
particularly	the	Momentum	trading	and	Distance	based	pairs	trading	sections.	You	also	need	to	optimize
parameters	using	in-sample	data	and	use	those	optimized	parameters	for	out-sample	data	to	really	get
strategy	performance	on	out-sample	data.

Co-integration	based	pairs	trading

Co-integration	based	pairs	trading	is	the	latest	arsenal	in	pairs	trading	and	its	use	is	picking	up	very	fast
these	days.

Co-integration	considers	the	regression	of	one	price	series	against	another	price	series.	As	these	series
are	non-stationary,	the	regression	results	will	be	spurious	if	these	series	are	not	co-integrated.	Co-
integration	becomes	crucial	when	we	have	to	regress	non-stationary	series.	You	first	check	the	time	series
you	are	using	is	non-stationary.	You	need	to	load	the	package	tseries	into	your	workspace	and	the	data
used	in	this	section	is	from	January	1,	2014	to	December	31,	2014:

>	library(tseries)

>adf.test(xom)

Augmented	Dickey-Fuller	test:

data:		xom	

Dickey-Fuller	=	-1.4326,	Lag	order	=	11,	p-value	=	0.8185	

alternative	hypothesis:	stationary	

You	can	see	the	Dicky-Fuller	statistic	is	-1.4326,	which	is	higher	than	-3.43.	This	implies	the	series
is	non-stationary	and	you	can	also	check	the	first	difference	of	the	series:

>	diff	<-	xom	-	Lag(xom,1)	

>adf.test(diff[!is.na(diff)])	

			Augmented	Dickey-Fuller	Test	

data:		diff[!is.na(diff)]	

Dickey-Fuller	=	-11.791,	Lag	order	=	11,	p-value	=	0.01	

alternative	hypothesis:	stationary	

As	diff	contain	NA,	you	should	consider	only	non-NAs	and	use	adf.test()	to	test	it	for	unit	roots.	The
Dickey-Fuller	statistic	using	the	first	difference	of	time	series	is	-11.97,	which	is	less	than	-3.43,
which	shows	the	first	difference	is	stationary	and	this	suggests	XOM	is	integrated	of	order	1,	that	is,
O(1).

Now	I	am	going	to	fit	the	model	for	XOM	and	CVX	using	lm().	lm()	corresponds	to	the	linear	model	and
it	regresses	XOM	against	CVX	original	prices	and	0	in	lm()	means	regression	without	intercept:

>	model	<-	lm(xom	~	cvx	+	0)	

>	model	

Call:	

lm(formula	=	xom	~	cvx	+	0)	

Coefficients:	

cvx	

0.8008			

A	summary	of	the	model	can	be	looked	into	using	the	summary()	command:

>	summary(model)	

Call:	

lm(formula	=	xom	~	cvx	+	0)	

Residuals:	

					Min							1Q			Median							3Q						Max		

-12.7667		-2.2833			0.4533			2.9224		13.9694		

Coefficients:	

Estimate	Std.	Error	t	value	Pr(>|t|)					

cvx	0.800802			0.001123			713.4			<2e-16	***	

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	

Residual	standard	error:	4.587	on	1509	degrees	of	freedom	

Multiple	R-squared:		0.997,					Adjusted	R-squared:		0.997		

F-statistic:	5.09e+05	on	1	and	1509	DF,		p-value:	<	2.2e-16>	

The	next	thing	is	we	have	to	extract	residuals	from	the	variable	called	model	and	test	it	for	unit	roots,
which	you	have	to	do	using	the	following	command.	You	can	see	in	the	output	that	the	Dickey-Fuller
statistic	is	-2.6088,	which	is	greater	than	-3.43,	which	implies	that	there	is	unit	root.	In	probability
theory,	unit	root	has	an	important	feature	which	needs	to	be	verified.	The	presence	of	unit	root	causes
inference	problems	as	time	series	with	unit	root	inflate	which	does	not	converge	or	keep	on	diverging.
Non-stationary	time	series	have	unit	root	and	they	do	not	converge.	Finding	of	unit	root	implies	XOM	and
CVX	are	not	co-integrated:

>adf.test(as.ts(model$residuals))

Augmented	Dickey-Fuller	Test

data:		as.ts(model$residuals)

Dickey-Fuller	=	-2.6088,	Lag	order	=	11,	p-value	=	0.3206

alternative	hypothesis:	stationary

Mobil	(XOM)	and	hedge	ratio	times	BP	Plc	(BP)	along	with	its	residuals.	If	you	look	at	the	prices	series,
you	can	see	the	closeYou	have	to	find	another	pair	which	is	co-integrated,	so	let	us	try	to	find	another

pair.	Let	me	show	you	co-integration	between	Exxon	Mobil	(XOM)	and	BP	Plc	(BP).

Extract	XOM	and	BP	Price	closing	prices	using	GetSymbols()	and	use	them	to	regress	to	establish	the
relationship:

>	model	<-	lm(xom	~	bp	+	0)	

>adf.test(as.ts(model$residuals))	

Augmented	Dickey-Fuller	Test	

data:		as.ts(model$residuals)	

Dickey-Fuller	=	-3.9007,	Lag	order	=	11,	p-value	=	0.01395	

alternative	hypothesis:	stationary	

Here,	the	Dickey-Fuller	statistic	is	-3.9007,	which	is	less	than	critical	value	at	95%	confidence	value
(-3.43)	so	this	doesn't	have	unit	root	and	this	pair	is	stationary:

>	par(mfrow=c(2,1))	

>	plot(dji,type="l")	

>	lines(snp*model$coefficients,col="red")	

>	plot(model$residuals,type="l")	

Figure	5.7	shows	the	XOM	and	hedge	ratio	times	for	BP	price	series	and	its	spread.	plot()	and
lines()	are	used	to	plot	this	figure.	Now,	as	the	residuals	are	mean	reverting,	so	the	next	target	is	to
generate	bounds	and	signal	using	the	following	commands:

>roll_me<-	rollapply(model$residuals,14,mean)

>roll_std<-	rollapply(model$residuals,14,sd)

>	n	<-	1

>roll_ub<-	roll_me	+	n	*	roll_std

>roll_lb<-	roll_me	-	n	*	roll_std

The	preceding	two	commands	have	the	parameter	n,	which	is	arbitrary	and	should	be	optimized:

>	signal	<-	NULL

>	signal	<-	ifelse(model$residuals>	roll_ub,-1,ifelse(model$residuals<	

roll_lb,1,0))

>lagsignal<-	Lag(signal,1)

>signal	<-	ifelse(lagsignal	==	-1	&model$residuals>	roll_me,-1,ifelse(lagsignal	==	

1	&model$residuals<	roll_me,1,0))

Figure	5.7	shows	the	series	Exxon	Mobil	(XOM)	and	hedge	ratio	times	BP	Plc	(BP)	along	with	its
residuals.	If	you	look	at	the	prices	series,	you	can	see	the	close	relation	between	both	series	and	these
two	series	do	not	deviate	too	much	for	so	long.	If	these	deviate	at	all,	very	soon	they	return	close	by:

	

	

	

Figure	5.7:	Series	of	XOM	and	hedge	ratio	times	BP	along	with	their	spread	series

As	you	have	generated	signals,	you	should	calculate	the	performance	of	the	strategy,	as	can	be	done	using
the	commands	I	mentioned	in	the	Momentum	trading	or	Distance	based	pairs	trading	sections.

Capital	asset	pricing	model
The	capital	asset	pricing	model	(CAPM)	model	helps	to	gauge	risk	contributed	by	security	or	portfolio

to	its	benchmark	and	is	measured	by	beta	().	Using	the	CAPM	model,	we	can	estimate	the	expected
excess	return	of	an	individual	security	or	portfolio	which	is	proportional	to	its	beta:

	

	

Here:

E(Ri):	Expected	return	of	security
E(Rm):	Expected	return	of	market
Ri:	Rate	of	return	of	security
Rf:	Risk	Free	rate	of	return
Rm:	Benchmark	or	market	return

:	Beta	of	the	security

CVX	is	regressed	against	DJI	using	linear	model	as	per	equation	5.4.

Here	I	used	zero	as	risk-free	return	in	the	following	command:	>rf<-	rep(0,length(dji))	>model	<-
lm((ret_cvx	-rf)	~	(ret_dji	-rf))	>	model	Call:	lm(formula	=	(ret_cvx	-	rf)	~	(ret_dji	-	rf))
Coefficients:	(Intercept)	ret_dji	-0.0002013	1.1034521

You	can	see	the	intercept	term	in	the	above	result	is	alpha	(-0.0002013)	and	coefficient	for	ret_dji	is
beta	(1.1034521).	However,	you	can	also	use	the	PerformanceAnalytics	package	to	calculate	CAPM
alpha	and	beta	using	CAPM.alpha()	and	CAPM.beta().

The	following	command	shows	how	to	use	this	whose	result	are	same	as	preceding	one:
>CAPM.beta(ret_cvx,ret_dji)	[1]	1.103452	>CAPM.alpha(ret_cvx,ret_dji)	[1]	-0.0002013222

The	beta	value	from	CAPM.beta()	is	the	same	as	the	coefficient,	and	CAPM.alpha()	is	the	same	as
intercept	in	the	above	regression.	You	can	also	see	a	scatter	plot	of	the	returns	and	its	fitted	lines:
>plot(as.ts(ret_cvx),as.ts(ret_dji),xlab="CVX_	Return",ylab="DJI_Return")
>abline(model,col="red")

Figure	5.8	shows	the	fitted	line	has	a	positive	slope,	which	implies	positive	correlation	between	the
returns.	We	can	check	this	statement	using	the	following	command:	>cor(ret_cvx,ret_dji)
Delt.1.arithmetic	Delt.1.arithmetic	0.7881967

	

	

	

Figure	5.8:	Scatter	plot	of	DJI	and	CVS	return	and	its	fitted	line

Multi	factor	model
The	multi	factor	model	can	be	used	to	decompose	returns	and	calculate	risk.	The	factors	are	constructed
using	pricing,	fundamental,	and	analyst	estimates	data.	I	will	use	Systematic	Investor	Toolbox	for	this
section.

The	gzcon()	function	creates	a	connection	and	reads	data	in	compressed	format.	Once	we	create	a
connection,	we	also	have	to	close	the	connection.

The	following	commands	explain	this:

>	con	=	gzcon(url('http://www.systematicportfolio.com/sit.gz',	'rb'))

>		source(con)

>	close(con)

The	following	function	is	used	to	fetch	Dow	Jones	components	data	from	http://money.cnn.com	and
join()	is	taken	from	Systematic	Investor	Toolbox:	>dow.jones.components<-	function(){	url	=
'http://money.cnn.com/data/dow30/'	txt	=	join(readLines(url))	temp	=	gsub(pattern	=	'">',
replacement	=	'<td>',	txt,	perl	=	TRUE)	temp	=	gsub(pattern	=	'',	replacement	=	'</td>',	temp,
perl	=	TRUE)	temp	=	extract.table.from.webpage(temp,	'Volume',	has.header	=	T)
trim(temp[,'Company'])	}

The	next	single	line	of	code	is	a	call	to	the	preceding	function,	which	extracts	the	Dow	Jones	constituent
list:	>tickers	=	dow.jones.components()

The	following	commands	explain	how	to	extract	fundamental	data	for	the	last	80	months	of	all	companies
in	the	tickers	list.	These	commands	will	take	a	few	minutes	to	extract	data	so	it	is	recommended	to	save
the	data	once	you	extract	it	and	later	you	should	use	the	load()	command	to	load	it:	>data.fund<-
new.env()	>	temp	=	paste(iif(nchar(tickers)	<=	3,	'NYSE:',	'NASDAQ:'),	tickers,	sep='')	>for(i	in
1:len(tickers))	data.fund[[tickers[i]]]	=	fund.data(temp[i],	80)	>save(data.fund,
file='data.fund.Rdata')	#	load(file='data.fund.Rdata')

The	next	set	of	commands	is	the	same	as	preceding	code,	but	to	extract	price	data:	#	get	pricing	data
>data	<-	new.env()	>getSymbols(tickers,	src	=	'yahoo',	from	=	'1970-01-01',	env	=	data,	auto.assign
=	T)	>for(i	in	ls(data))	data[[i]]	=	adjustOHLC(data[[i]],	use.Adjusted=T)	>save(data,
file='data.Rdata')	#load(file='data.Rdata')

The	subsequent	function	creates	various	date	variables	in	date	format:	>date.fund.data<-	function(data)
{	quarter.end.date	=	as.Date(paste(data['quarter	end	date',],	'/1',	sep=''),	'%Y/%m/%d')
quarterly.indicator	=	data['quarterly	indicator',]	date.preliminary.data.loaded	=	as.Date(data['date
preliminary	data	loaded',],	'%Y-%m-%d')	+	1	months	=	seq(quarter.end.date[1],
tail(quarter.end.date,1)+365,	by='1	month')	index	=	match(quarter.end.date,	months)
quarter.end.date	=	months[iif(quarterly.indicator	==	'4',	index+3,	index+2)	+	1]	-	1	fund.date	=
date.preliminary.data.loaded	fund.date[is.na(fund.date)]	=	quarter.end.date[is.na(fund.date)]
return(fund.date)	}

http://money.cnn.com

Now	you	have	extracted	price	and	fundamental	data,	you	should	use	this	data	to	construct	various
fundamental	factors	such	as	EPS,	number	of	shares	outstanding,	market	capitalization,	market	value	to
book	value,	and	so	on.	This	loop	calculates	fundamental	factors	for	every	ticker	one	by	one	and	creates	a
list:	>	library(quantmod)	>for(i	in	tickers)	{	fund	=	data.fund[[i]]	fund.date	=	date.fund.data(fund)	#
Earnings	per	Share	EPS	=	get.fund.data('Diluted	EPS	from	Total	Operations',	fund,	fund.date,
is.12m.rolling=T)	#	Common	Shares	Outstanding	CSHO	=	get.fund.data('total	common	shares	out',
fund,	fund.date)	#	Common	Equity	CEQ	=	get.fund.data('total	equity',	fund,	fund.date)	#	merge
data[[i]]	=	merge(data[[i]],	EPS,	CSHO,	CEQ)	}

Next,	I	filtered	the	preceding	data	for	the	period	starting	at	1995	and	lasting	at	2011:	>bt.prep(data,
align='keep.all',	dates='1995::2011')

Prices	for	all	tickers	can	be	extracted	and	NAN	can	be	replaced	with	previous	values	using	the	following
commands:	>	prices	=	data$prices	>	prices	=	bt.apply.matrix(prices,	function(x)	ifna.prev(x))

Now	you	have	to	construct	fundamental	ratios	using	fundamental	factors	and	prices.	I	created	three	ratios;
however,	you	can	create	any	number	of	ratios	that	you	would	like	to	consider.	I	created	market
capitalization,	EPS	to	price	ratio,	and	book	value	to	price:	#	Financial	Ratios	>factors$TV	=	list()	#
Market	Value	-	capitalization	>	CSHO	=	bt.apply(data,	function(x)	ifna.prev(x[,	'CSHO']))	>
MKVAL	=	prices	*	CSHO	#	Earnings	/	Price	>	EPS	=	bt.apply(data,	function(x)	ifna.prev(x[,
'EPS']))	>factorsTVEP	=	EPS	/	prices	#	Book	Value	/	Price	>	CEQ	=	bt.apply(data,	function(x)
ifna.prev(x[,	'CEQ']))	>factorsTVBP	=	CEQ	/	MKVAL

As	scaling	for	all	of	these	ratios	might	be	different,	before	moving	on,	we	shouldn't	forget	to	standardize
it.	I	calculated	the	Z	score	to	standardize	this	data:	#	normalize	(convert	to	z	scores)	cross	sectional	all
Traditional	Value	factors	>for(i	in	names(factors$TV))	{	factors$TV[[i]]	=	(factors$TV[[i]]	-
cap.weighted.mean(factors$TV[[i]],	MKVAL))	/	apply(factors$TV[[i]],	1,	sd,	na.rm=T)	}	This	is	how
we	bind	different	data	in	multidimensional	case	#	compute	the	overall	Traditional	Value	factor
>load.packages('abind')	>	temp	=	abind(factors$TV,	along	=	3)

Calculate	the	average	of	all	the	normalized	factors:

>factorsTVAVG	=	factors$TV[[1]]

>factorsTVAVG[]	=	apply(temp,	c(1,2),	mean,	na.rm=T)

As	of	now,	we	have	daily	data	and	created	financial	ratios	on	a	daily	basis.	You	can	convert	it	to	any
frequency	you	desire.	I	converted	it	to	monthly	frequency	and	extracted	data	for	the	last	day	of	the	month:
#	find	month	ends	>month.ends	=	endpoints(prices,	'months')	>	prices	=	prices[month.ends,]	>	n	=
ncol(prices)	>nperiods	=	nrow(prices)

This	is	how	you	should	calculate	monthly	return	and	its	lag:	>	ret	=	prices	/	mlag(prices)	-	1
>next.month.ret	=	mlag(ret,	-1)

Marker	capitalization	at	the	end	of	every	month	can	be	calculated	using	the	following:	>	MKVAL	=
MKVAL[month.ends,]

Extract	all	ratios	for	the	last	day	of	the	month:

>for(j	in	1:len(factors))	{		

for(i	in	1:len(factors[[j]]))	{

									factors[[j]][[i]]	=	factors[[j]][[i]][month.ends,]		

					}}

Next	you	should	calculate	quantiles,	which	can	be	calculated	using	the	following	commands.	I	created
five	quantiles,	and	the	average	next	month	return	of	each	quantile	is	calculated	using	the	earning	price
factor.	Quantiles	are	created	month	by	ranging	stocks	based	on	EP	factor:	>	out	=
compute.quantiles(factorsTVAVG,	next.month.ret,	plot=F)	>	models	=	list()	>for(i	in	1:5)	{
data$weight[]	=	NA	data$weight[month.ends,]	=	iif(out$quantiles	==	i,	out$weights,	0)	capital	=
100000	data$weight[]	=	(capital	/	prices)	*	(data$weight)	models[[paste('Q',i,sep='')]]	=
bt.run(data,	type='share',	capital=capital)	}

The	top	and	bottom	are	very	extreme	and	should	be	used	to	create	a	spread	(Q5	-	Q1).	The	dynamics	of
this	spread	helps	to	design	and	develop	an	investing	strategy,	that	is,	momentum	or	mean	reverting:	#
spread	>data$weight[]	=	NA	>data$weight[month.ends,]	=	iif(out$quantiles	==	5,	out$weights,
iif(out$quantiles	==	1,	-out$weights,	0))	>	capital	=	100000	>data$weight[]	=	(capital	/	prices)	*
(data$weight)	>	models$Q5_Q1	=	bt.run(data,	type='share',	capital=capital)

Now	you	should	run	cross-sectional	regression	to	estimate	alpha	and	portfolio	loadings	and	these	can	be
calculated	using	the	following	commands:	>factors.avg	=	list()	>for(j	in	names(factors))
factors.avg[[j]]	=	factors[[j]]$AVG	>factors.avg	=	add.avg.factor(factors.avg)	>nperiods	=
nrow(next.month.ret)	>	n	=ncol(next.month.ret)	#	create	matrix	for	each	factor	>factors.matrix	=
abind(factors.avg,	along	=	3)	>all.data	=	factors.matrix	>	#	betas	>	beta	=	all.data[,1,]	*	NA	#
append	next.month.ret	to	all.data	>all.data	=	abind(next.month.ret,	all.data,	along	=	3)
>dimnames(all.data)[[3]][1]	=	'Ret'	#	estimate	betas	(factor	returns)	>for(t	in	30:(nperiods-1))	{
temp	=	all.data[t:t,,]	x	=	temp[,-1]	y	=	temp[,1]	beta[(t+1),]	=	lm(y~x-1)$coefficients	}	#	create
Alpha	return	forecasts	>	alpha	=	next.month.ret	*	NA	>for(t	in	40:(nperiods-1))	{	#	average	betas
over	the	last	6	months	coef	=	colMeans(beta[(t-5):t,],na.rm=T)	alpha[t,]	=	rowSums(all.data[t,,-1]	*
t(repmat(coef,	1,n)),	na.rm=T)	}

We	can	also	use	these	alpha	and	beta	to	estimate	future	portfolio	return	as	well.

Portfolio	construction
Investors	are	interested	in	reducing	risk	and	maximizing	return	of	their	investment	and	creating	a	portfolio
does	this	job	provided	we	have	constructed	it	by	keeping	in	mind	the	investor	risk-return	profile.	I	will
guide	you	through	creating	an	efficient	frontier	that	can	help	you	to	measure	risk	with	respect	to	your
return	expectation.	For	that,	I	will	start	extracting	data	for	four	securities.	The	first	line	of	code	creates	a
new	environment	to	store	data;	the	next	few	lines	are	for	symbols	list,	data	starting	date,	and	extracting
data	using	getSymbols():	>stockData<-	new.env()	>	symbols	<-
c("MSFT","FB","GOOG","AAPL")	>start_date<-	as.Date("2014-01-01")	>getSymbols(symbols,
src="yahoo",	env=stockData,	from=start_date)	>	x	<-	list()

The	next	for	loop	stores	individual	stock	data	in	a	list,	and	calculates	the	day's	gain	and	a	data	frame
consisting	of	closing	prices	of	all	stocks	in	portfolio:	>for	(i	in	1:length(symbols))	{	x[[i]]	<-
get(symbols[i],	pos=stockData)	#	get	data	from	stockData	environment	x[[i]]$gl<-((Cl(x[[i]])-
Op(x[[i]]))/Op(x[[i]]))*100	#Daily	gain	loss	percentage	if(i==1)	data	<-	Cl(x[[i]])	else	data	<-
cbind(data,Cl(x[[i]]))	}

The	return,	average	return	for	each	stocks,	and	covariance	matrix	can	be	calculated	using	the	following
commands:	>data_ret<-	apply(data,2,Delt)	>napos<-	which(apply(data_ret,2,is.na))#	Remove	Na's
>avg_ret<-	apply(data_ret[-napos,],2,mean)	>covariance_mat<-	cov(data_ret,use='na')

I	will	be	using	the	following	weights	to	assign	to	portfolio:

>	weights	<-	c(0.2,0.3,0.35,0.15)

Now	you	have	to	browse	link	http://faculty.washington.edu/ezivot/econ424/portfolio.r	and	save	this	R
code	in	the	file	portfolio.R.	You	should	use	the	following	command	to	access	the	function	developed
under	portoflio.R:	>	source("portfolio.R")

To	calculate	portfolio	expected	return	and	standard	deviations,	we	require	return,	weights,	and
covariance	matrix.	Now	we	have	all	the	data	and	can	use	the	following	commands	to	generate	portfolio
expected	return	and	risk:	>weightedport	=	getPortfolio(avg_ret,covariance_mat,weights)
>weightedport	Call:	getPortfolio(er	=	avg_ret,	cov.mat	=	covariance_mat,	weights	=	weights)
Portfolio	expected	return:	0.0004109398	Portfolio	standard	deviation:	0.01525882	Portfolio
weights:	MSFT.CloseFB.CloseGOOG.CloseAAPL.Close	0.20	0.30	0.35	0.15

The	global	minimum	variance	portfolio	is	obtained	using	the	following	command.	You	can	see	here	that
portfolio	weights	are	different	compared	to	weights	in	the	previous	command	and	this	set	of	weights	helps
to	generate	a	portfolio	which	has	lower	standard	deviation:	>minvar_port<-
globalMin.portfolio(avg_ret,	covariance_mat)	>minvar_port	Call:	globalMin.portfolio(er	=	avg_ret,
cov.mat	=	covariance_mat)	Portfolio	expected	return:	0.0007211767	Portfolio	standard	deviation:
0.01349528	Portfolio	weights:	MSFT.CloseFB.CloseGOOG.CloseAAPL.Close	0.5889	0.2415	0.1001
0.0696

Now	suppose	you	want	to	generate	a	portfolio	which	has	0.0002	as	the	expected	return.	The	following
command	will	help	generate	portfolio	weights	and	standard	deviation	for	the	portfolio	of	expected	return

http://faculty.washington.edu/ezivot/econ424/portfolio.r

0.0002:	>rf<-	0.0002	>effcient_port<-	efficient.portfolio(avg_ret,	covariance_mat,rf)
>effcient_port	Call:	efficient.portfolio(er	=	avg_ret,	cov.mat	=	covariance_mat,	target.return	=	2e-
04)	Portfolio	expected	return:	2e-04	Portfolio	standard	deviation:	0.0169678	Portfolio	weights:
MSFT.CloseFB.CloseGOOG.CloseAAPL.Close	0.4626	-0.1292	0.4184	0.2482

A	tangency	portfolio	is	a	portfolio	of	risky	assets	which	has	the	highest	Sharpe's	slope.	To	compute	this,	I
used	the	tangency.portfolio()	function:	>tangency_port<-
tangency.portfolio(avg_ret,covariance_mat	,	rf)	>tangency_port	Call:	tangency.portfolio(er	=
avg_ret,	cov.mat	=	covariance_mat,	risk.free	=	2e-04)	Portfolio	expected	return:	0.4942792
Portfolio	standard	deviation:	0.02226374	Portfolio	weights:
MSFT.CloseFB.CloseGOOG.CloseAAPL.Close	0.8062	0.8797	-0.4480	-0.2378

We	have	already	calculated	the	global	minimum	variance	portfolio,	and	the	other	portfolio	with	maximum
expected	return	can	be	considered	as	the	second	portfolio.	Call	these	portfolios	P1	and	P2	respectively.

Now,	for	any	 ,	another	portfolio	can	be	constructed	as	follows:

	

	

The	efficient	frontier	can	be	calculated	using	the	following	command.	This	generates	50	portfolios	using	

	in	the	range	-2	to	2:	>efficient_frontier<-	efficient.frontier(avg_ret,	covariance_mat,
alpha.min=-2,alpha.max=2,	nport=50)

Next,	in	Figure	5.9,	I	plotted	the	efficient	frontier,	red	and	blue	points	for	minimum	variance	and	tangency
portfolio,	and	tangent	to	the	frontier:	>plot(efficient_frontier,	plot.assets=T)	>points(minvar_port$sd,
minvar_port$er,	col="blue")	>points(tangency_port$sd,tangency_port$er,	col="red")
>tangenet_sharpe_ratio	=	(tangency_port$er	-	rf)/tangency_port$sd	>abline(a=rf,
b=tangenet_sharpe_ratio)

	

	

	

Figure	5.9:	Efficient	frontier	for	portfolio	and	tangent	line

Questions
1.	 How	do	you	import	stock	data	into	the	R	workspace	from	Yahoo	Finance?
2.	 How	do	you	generate	a	momentum	strategy	using	moving	average	crossover?
3.	 Which	package	helps	to	calculate	the	performance	metrics	of	a	strategy?
4.	 How	do	you	calculate	the	covariance	matrix	for	a	portfolio	consisting	of	five	stocks?
5.	 Extract	MSFT	data	from	Yahoo	and	test	that	the	closing	price	series	is	non-stationary.
6.	 Use	the	distance	method	to	generate	trading	signals	which	exit	when	the	spread	reverts	to	mean.
7.	 How	do	you	test	a	pair	of	stocks	for	co-integration	and	write	code	to	test	it?
8.	 How	do	you	calculate	hedge	ratio	and	how	does	it	helps	in	trading?
9.	 How	do	you	calculate	portfolio	beta?	Show	it	using	an	example.
10.	 How	do	you	use	the	fundamental	factor	to	create	quantiles	and	quantile	spread?
11.	 Write	code	to	calculate	portfolio	expected	_return	and	standard	deviation.
12.	 How	do	you	calculate	the	efficient	frontier	and	plot	it	using	the	R	command?

Summary
In	this	chapter,	I	presented	different	concepts	of	trading	using	R.	I	started	with	trend	following	strategy
and	explained	in	depth	how	the	trading	signals	are	generated	and	how	various	parameters	related	to	its
performance	are	captured.	Momentum	strategies	was	followed	by	pairs	trading	using	three	different
methods.	The	first	method	covered	was	distance	based	pairs	trading,	the	second	was	correlation	based,
and	the	third	and	final	method	was	co-integration	based	pairs	trading.	Sometimes,	trading	in	a	portfolio	is
important	to	control	the	risk	and	reward	ratio	and	for	that	I	have	covered	capital	asset	pricing,	the	multi
factor	model,	and	portfolio	construction.	I	used	Systematic	Investor	Toolbox	for	implementing	portfolio
ideas.

In	the	next	chapter,	I	will	explain	trading	strategies	using	machine	learning	algorithms,	which	are	gaining
in	popularity.	Machine	learning	algorithms	learn	automatically	from	historical	market	behavior	and	try	to
mimic	this	behavior.

Chapter	6.	Trading	Using	Machine	Learning
In	the	capital	market,	machine	learning-based	algorithmic	trading	is	quite	popular	these	days	and	many
companies	are	putting	a	lot	of	effort	into	machine	learning-based	algorithms	which	are	either	proprietary
or	for	clients.	Machine	learning	algorithms	are	programmed	in	such	a	way	that	they	learn	continuously	and
change	their	behavior	automatically.	This	helps	to	identify	new	patterns	when	they	emerge	in	the	market.
Sometimes	patterns	in	the	capital	market	are	so	complex	they	cannot	be	captured	by	humans.	Even	if
humans	somehow	managed	to	find	one	pattern,	humans	do	not	have	the	tendency	to	find	it	efficiently.
Complexity	in	patterns	forces	people	to	look	for	alternative	mechanisms	which	identify	such	complex
patterns	accurately	and	efficiently.

In	the	previous	chapter,	you	got	the	feel	of	momentum,	pairs-trading-based	algorithmic	trading,	and
portfolio	construction.	In	this	chapter,	I	will	explain	step	by	step	a	few	supervised	and	unsupervised
machine	learning	algorithms	which	are	being	used	in	algorithm	trading:

Logistic	regression	neural	network
Neural	network
Deep	neural	network
K	means	algorithm
K	nearest	neighborhood
Support	vector	machine
Decision	tree
Random	forest

A	few	of	the	packages	used	in	this	chapter	are	quantmod,	nnet,	genalg,	caret,
PerformanceAnalytics,	deepnet,	h2o,	clue,	e1071,	randomForest,	and	party.

Logistic	regression	neural	network
Market	direction	is	very	important	for	investors	or	traders.	Predicting	market	direction	is	quite	a
challenging	task	as	market	data	involves	lots	of	noise.	The	market	moves	either	upward	or	downward	and
the	nature	of	market	movement	is	binary.	A	logistic	regression	model	help	us	to	fit	a	model	using	binary
behavior	and	forecast	market	direction.	Logistic	regression	is	one	of	the	probabilistic	models	which
assigns	probability	to	each	event.	I	am	assuming	you	are	well	versed	with	extracting	data	from	Yahoo	as
you	have	studied	this	in	previous	chapters.	Here	again,	I	am	going	to	use	the	quantmod	package.	The	next
three	commands	are	used	for	loading	the	package	into	the	workspace,	importing	data	into	R	from	the
yahoo	repository	and	extracting	only	the	closing	price	from	the	data:	>library("quantmod")
>getSymbols("^DJI",src="yahoo")	>dji<-	DJI[,"DJI.Close"]

The	input	data	to	the	logistic	regression	is	constructed	using	different	indicators,	such	as	moving	average,
standard	deviation,	RSI,	MACD,	Bollinger	Bands,	and	so	on,	which	has	some	predictive	power	in	market
direction,	that	is,	Up	or	Down.	These	indicators	can	be	constructed	using	the	following	commands:
>avg10<-	rollapply(dji,10,mean)	>avg20<-	rollapply(dji,20,mean)	>std10<-	rollapply(dji,10,sd)
>std20<-	rollapply(dji,20,sd)	>rsi5<-	RSI(dji,5,"SMA")	>rsi14<-	RSI(dji,14,"SMA")	>macd12269<-
MACD(dji,12,26,9,"SMA")	>macd7205<-	MACD(dji,7,20,5,"SMA")	>bbands<-
BBands(dji,20,"SMA",2)

The	following	commands	are	to	create	variable	direction	with	either	Up	direction	(1)	or	Down	direction
(0).	Up	direction	is	created	when	the	current	price	is	greater	than	the	20	days	previous	price	and	Down
direction	is	created	when	the	current	price	is	less	than	the	20	days	previous	price:	>direction<-	NULL
>direction[dji>	Lag(dji,20)]	<-	1	>direction[dji<	Lag(dji,20)]	<-	0

Now	we	have	to	bind	all	columns	consisting	of	price	and	indicators,	which	is	shown	in	the	following
command:	>dji<-
cbind(dji,avg10,avg20,std10,std20,rsi5,rsi14,macd12269,macd7205,bbands,direction)

The	dimension	of	the	dji	object	can	be	calculated	using	dim().	I	used	dim()	over	dji	and	saved	the
output	in	dm().	dm()	has	two	values	stored:	the	first	value	is	the	number	of	rows	and	the	second	value	is
the	number	of	columns	in	dji.	Column	names	can	be	extracted	using	colnames().	The	third	command	is
used	to	extract	the	name	for	the	last	column.	Next	I	replaced	the	column	name	with	a	particular	name,
Direction:	>dm<-	dim(dji)	>dm	[1]	2493	16	>colnames(dji)[dm[2]]	[1]	"..11"	>colnames(dji)[dm[2]]
<-	"Direction"	>colnames(dji)[dm[2]]	[1]	"Direction"

We	have	extracted	the	Dow	Jones	Index	(DJI)	data	into	the	R	workspace.	Now,	to	implement	logistic
regression,	we	should	divide	the	data	into	two	parts.	The	first	part	is	in-sample	data	and	the	second	part
is	out-sample	data.

In-sample	data	is	used	for	the	model	building	process	and	out-sample	data	is	used	for	evaluation
purposes.	This	process	also	helps	to	control	the	variance	and	bias	in	the	model.	The	next	four	lines	are
for	in-sample	start,	in-sample	end,	out-sample	start,	and	out-sample	end	dates:	>issd<-	"2010-01-01"
>ised<-	"2014-12-31"	>ossd<-	"2015-01-01"	>osed<-	"2015-12-31"

The	following	two	commands	are	to	get	the	row	number	for	the	dates,	that	is,	the	variable	isrow	extracts
row	numbers	for	the	in-sample	date	range	and	osrow	extracts	the	row	numbers	for	the	out-sample	date
range:	>isrow<-	which(index(dji)	>=	issd&	index(dji)	<=	ised)	>osrow<-	which(index(dji)	>=	ossd&
index(dji)	<=	osed)

The	variables	isdji	and	osdji	are	the	in-sample	and	out-sample	datasets	respectively:	>isdji<-
dji[isrow,]	>osdji<-	dji[osrow,]

If	you	look	at	the	in-sample	data,	that	is,	isdji,	you	will	realize	that	the	scaling	of	each	column	is
different:	a	few	columns	are	in	the	scale	of	100,	a	few	others	are	in	the	scale	of	10,000,	and	a	few	others
are	in	the	scale	of	1.	Difference	in	scaling	can	put	your	results	in	trouble	as	higher	weights	are	being
assigned	to	higher	scaled	variables.	So	before	moving	ahead,	you	should	consider	standardizing	the

dataset.	I	will	use	the	following	formula:	

	

The	mean	and	standard	deviation	of	each	column	using	apply()	can	be	seen	here:	>isme<-
apply(isdji,2,mean)	>isstd<-	apply(isdji,2,sd)

An	identity	matrix	of	dimension	equal	to	the	in-sample	data	is	generated	using	the	following	command,
which	is	going	to	be	used	for	normalization:	>isidn<-	matrix(1,dim(isdji)[1],dim(isdji)[2])

Use	formula	6.1	to	standardize	the	data:

>norm_isdji<-		(isdji	-	t(isme*t(isidn)))	/	t(isstd*t(isidn))

The	preceding	line	also	standardizes	the	direction	column,	that	is,	the	last	column.	We	don't	want
direction	to	be	standardized	so	I	replace	the	last	column	again	with	variable	direction	for	the	in-sample
data	range:	>dm<-	dim(isdji)	>norm_isdji[,dm[2]]	<-	direction[isrow]

Now	we	have	created	all	the	data	required	for	model	building.	You	should	build	a	logistic	regression
model	and	it	will	help	you	to	predict	market	direction	based	on	in-sample	data.	First,	in	this	step,	I
created	a	formula	which	has	direction	as	dependent	and	all	other	columns	as	independent	variables.	Then
I	used	a	generalized	linear	model,	that	is,	glm(),	to	fit	a	model	which	has	formula,	family,	and	dataset:
>formula<-	paste("Direction	~	.",sep="")	>model<-	glm(formula,family="binomial",norm_isdji)

A	summary	of	the	model	can	be	viewed	using	the	following	command:	>summary(model)

Next	use	predict()	to	fit	values	on	the	same	dataset	to	estimate	the	best	fitted	value:	>pred<-
predict(model,norm_isdji)

Once	you	have	fitted	the	values,	you	should	try	to	convert	it	to	probability	using	the	following	command.
This	will	convert	the	output	into	probabilistic	form	and	the	output	will	be	in	the	range	[0,1]:	>prob<-	1	/
(1+exp(-(pred)))

Figure	6.1	is	plotted	using	the	following	commands.	The	first	line	of	the	code	shows	that	we	divide	the
figure	into	two	rows	and	one	column,	where	the	first	figure	is	for	prediction	of	the	model	and	the	second
figure	is	for	probability:	>par(mfrow=c(2,1))	>plot(pred,type="l")	>plot(prob,type="l")

head()	can	be	used	to	look	at	the	first	few	values	of	the	variable:	>head(prob)	2010-01-042010-01-05
2010-01-06	2010-01-07	0.8019197	0.4610468	0.7397603	0.9821293

The	following	figure	shows	the	above-defined	variable	pred,	which	is	a	real	number,	and	its	conversion
between	0	and	1,	which	represents	probability,	that	is,	prob,	using	the	preceding	transformation:

	

	

Figure	6.1:	Prediction	and	probability	distribution	of	DJI

As	probabilities	are	in	the	range	of	(0,1)	so	is	our	vector	prob.	Now,	to	classify	them	as	one	of	the	two
classes,	I	considered	Up	direction	(1)	when	prob	is	greater	than	0.5	and	Down	direction	(0)	when	prob	is
less	than	0.5.	This	assignment	can	be	done	using	the	following	commands.	prob>	0.5	generate	true	for
points	where	it	is	greater	and	pred_direction[prob>	0.5]	assigns	1	to	all	such	points.	Similarly,	the
next	statement	shows	assignment	0	when	probability	is	less	than	or	equal	to	0.5:	>pred_direction<-
NULL	>pred_direction[prob>	0.5]	<-	1	>pred_direction[prob<=	0.5]	<-	0

Once	we	have	figured	out	the	predicted	direction,	we	should	check	model	accuracy:	how	much	our	model

has	predicted	Up	direction	as	Up	direction	and	Down	as	Down.	There	might	be	some	scenarios	where	it
predicted	the	opposite	of	what	it	is,	such	as	predicting	down	when	it	is	actually	Up	and	vice	versa.	We
can	use	the	caret	package	to	calculate	confusionMatrix(),	which	gives	a	matrix	as	an	output.	All
diagonal	elements	are	correctly	predicted	and	off-diagonal	elements	are	errors	or	wrongly	predicted.	One
should	aim	to	reduce	the	off-diagonal	elements	in	a	confusion	matrix:	>install.packages('caret')
>library(caret)	>matrix<-	confusionMatrix(pred_direction,norm_isdji$Direction)	>matrix	Confusion
Matrix	and	Statistics	Reference	Prediction	0	1	0	362	35	1	42	819	Accuracy	:	0.9388	95%	CI	:
(0.9241,	0.9514)	No	Information	Rate	:	0.6789	P-Value	[Acc>NIR]	:	<2e-16	Kappa	:	0.859
Mcnemar's	Test	P-Value	:	0.4941	Sensitivity	:	0.8960	Specificity	:	0.9590	PosPredValue	:	0.9118
NegPred	Value	:	0.9512	Prevalence	:	0.3211	Detection	Rate	:	0.2878	Detection	Prevalence	:	0.3156
Balanced	Accuracy	:	0.9275

The	preceding	table	shows	we	have	got	94%	correct	prediction,	as	362+819	=	1181	are	correct
predictions	out	of	1258	(sum	of	all	four	values).	Prediction	above	80%	over	in-sample	data	is	generally
assumed	good	prediction;	however,	80%	is	not	fixed,	one	has	to	figure	out	this	value	based	on	the	dataset
and	industry.	Now	you	have	implemented	the	logistic	regression	model,	which	has	predicted	94%
correctly,	and	need	to	test	it	for	generalization	power.	One	should	test	this	model	using	out-sample	data
and	test	its	accuracy.	The	first	step	is	to	standardize	the	out-sample	data	using	formula	(6.1).	Here	mean
and	standard	deviations	should	be	the	same	as	those	used	for	in-sample	normalization:	>osidn<-
matrix(1,dim(osdji)[1],dim(osdji)[2])	>norm_osdji<-	(osdji	-	t(isme*t(osidn)))	/	t(isstd*t(osidn))
>norm_osdji[,dm[2]]	<-	direction[osrow]

Next	we	use	predict()	on	the	out-sample	data	and	use	this	value	to	calculate	probability:	>ospred<-
predict(model,norm_osdji)	>osprob<-	1	/	(1+exp(-(ospred)))

Once	probabilities	are	determined	for	the	out-sample	data,	you	should	put	it	into	either	Up	or	Down	classes
using	the	following	commands.	ConfusionMatrix()	here	will	generate	a	matrix	for	the	out-sample	data:
>ospred_direction<-	NULL	>ospred_direction[osprob>	0.5]	<-	1	>ospred_direction[osprob<=	0.5]	<-
0	>osmatrix<-	confusionMatrix(ospred_direction,norm_osdji$Direction)	>osmatrix	Confusion
Matrix	and	Statistics	Reference	Prediction	0	1	0	115	26	1	12	99	Accuracy	:	0.8492	95%	CI	:
(0.7989,	0.891)

This	shows	85%	accuracy	on	the	out-sample	data.	Quality	of	accuracy	is	beyond	the	scope	of	the	book	so
I	am	not	going	to	cover	whether	out-sample	accuracy	is	good	or	bad	and	what	the	techniques	are	to
improve	this	performance.	A	realistic	trading	model	also	accounts	for	trading	cost	and	market	slippage,
which	decrease	the	winning	odds	significantly.	The	next	thing	to	be	done	is	to	devise	a	trading	strategy
using	predicted	directions.	I	will	explain	how	to	implement	an	automated	trading	strategy	using	predicted
signals	in	the	next	section.

Neural	network
In	the	previous	section,	I	implemented	a	model	using	two	classes.	In	reality,	it	might	be	possible	that
traders	do	not	want	to	enter	trade	when	the	market	is	range-bound.	That	is	to	say,	we	have	to	add	one
more	class,	Nowhere,	to	the	existing	two	classes.	Now	we	have	three	classes:	Up,	Down,	and	Nowhere.	I
will	be	using	an	artificial	neural	network	to	predict	Up,	Down,	or	Nowhere	direction.	Traders	buy	(sell)
when	they	anticipate	a	bullish	(bearish)	trend	in	some	time	and	no	investment	when	the	market	is	moving
Nowhere.	An	artificial	neural	network	with	feedforward	backpropagation	will	be	implemented	in	this
section.	A	neural	network	requires	input	and	output	data	to	the	neural	network.	Closing	prices	and
indicators	derived	from	closing	prices	are	input	layer	nodes	and	three	classes	(Up,	Down,	and	Nowhere)
are	output	layer	nodes.	However,	there	is	no	limit	on	the	number	of	nodes	in	the	input	layer.	I	will	use	a
dataset	consisting	of	prices	and	indicators	used	in	the	logistic	regression.	However,	it	is	not	mandatory	to
use	same	dataset.	If	you	would	like	to	use	different	indicators,	you	can	do	so.	You	can	also	increase	or
decrease	the	number	of	indicators	in	the	dataset;	it	is	left	to	the	reader	to	construct	a	dataset	of	their
choice.	I	will	continue	this	section	using	the	same	the	dataset	that	is	used	in	logistic	regression	except
direction.	In	this	section,	we	have	Nowhere	as	the	third	dimension	in	the	direction	so	I	have	to	calculate
the	direction	parameter	again	to	train	the	neural	network:	>getSymbols("^DJI",src="yahoo")	>dji<-
DJI[,"DJI.Close"]	>	ret	<-	Delt(dji)	>avg10<-	rollapply(dji,10,mean)	>avg20<-
rollapply(dji,20,mean)	>std10<-	rollapply(dji,10,sd)	>std20<-	rollapply(dji,20,sd)	>rsi5<-
RSI(dji,5,"SMA")	>rsi14<-	RSI(dji,14,"SMA")	>macd12269<-	MACD(dji,12,26,9,"SMA")
>macd7205<-	MACD(dji,7,20,5,"SMA")	>bbands<-	BBands(dji,20,"SMA",2)

I	will	generate	Up	(Down)	direction	when	the	return	over	the	last	20	days	is	greater	(less)	than	2%	(-2%),
and	Nowhere	when	the	return	over	the	last	20	days	is	between	-2%	and	2%.

The	first	line	generates	a	data	frame	named	direction	which	consists	of	NA	and	a	number	of	rows	the
same	as	the	number	of	rows	in	dji	and	one	column.	The	second	command	is	the	return	over	the	last	20
days.	The	parameter	value	20	is	sacrosanct;	however,	you	can	choose	any	value	you	wish	to.	The	third,
fourth,	and	fifth	commands	are	basically	the	assignment	of	Up,	Down	and	NoWhere	direction	as	per	the
condition:	>direction<-	data.frame(matrix(NA,dim(dji)[1],1))	>lagret<-	(dji	-	Lag(dji,20))	/
Lag(dji,20)	>direction[lagret>	0.02]	<-	"Up"	>direction[lagret<	-0.02]	<-	"Down"
>direction[lagret<	0.02	&lagret>	-0.02]	<-	"NoWhere"

Closing	price	and	indicators	are	clubbed	into	one	variable	called	dji	using	the	following	command	line:
>dji<-	cbind(dji,avg10,avg20,std10,std20,rsi5,rsi14,macd12269,macd7205,bbands)

Data	for	the	neural	network	is	divided	into	three	parts,	that	is,	training	dataset,	validating	dataset,	and
testing	dataset.	Training	data	should	be	used	for	training	the	neural	network;	however,	validating	data
should	be	used	for	validating	estimated	parameters	and	testing	dataset	to	measure	the	accuracy	of	the
prediction.	I	have	used	the	following	date	variables	to	define	the	date	range	and	extract	data	as	per	the
date	range:	>train_sdate<-	"2010-01-01"	>train_edate<-	"2013-12-31"	>vali_sdate<-	"2014-01-01"
>vali_edate<-	"2014-12-31"	>test_sdate<-	"2015-01-01"	>test_edate<-	"2015-12-31"

Date	ranges	for	the	three	datasets	can	be	constructed	using	the	following	commands,	where	train_sdate

and	train_edate	define	training	period	start	and	end	dates	respectively.	Similarly,	validating	and	testing
period	dates	are	also	used.

The	function	which()	is	used	to	generate	row	numbers	where	the	date	is	greater	than	and	equal	to	the	start
date	and	less	than	and	equal	to	the	end	date:	>trainrow<-	which(index(dji)	>=	train_sdate&	index(dji)
<=	train_edate)	>valirow<-	which(index(dji)	>=	vali_sdate&	index(dji)	<=	vali_edate)	>testrow<-
which(index(dji)	>=	test_sdate&	index(dji)	<=	test_edate)

Now,	using	the	preceding	row	numbers,	you	should	extract	data	for	training,	validating,	and	testing
periods:	>traindji<-	dji[trainrow,]	>validji<-	dji[valirow,]	>testdji<-	dji[testrow,]

The	following	commands	are	used	to	calculate	the	mean	and	standard	deviations	of	training	data	column
wise.	The	function	apply()	uses	data	as	the	first	parameter,	direction	as	the	second	parameter,	in	which
we	would	like	to	apply	a	certain	function,	and	function	is	provided	as	the	third	parameter:	>trainme<-
apply(traindji,2,mean)	>trainstd<-	apply(traindji,2,sd)

To	normalize	the	three	datasets,	we	have	to	create	three	identity	matrices	of	dimensions	equal	to	the
training,	validating,	and	testing	data	dimensions.

The	following	commands	do	this	nicely:

>trainidn<-	(matrix(1,dim(traindji)[1],dim(traindji)[2]))

>valiidn<-	(matrix(1,dim(validji)[1],dim(validji)[2]))

>testidn<-	(matrix(1,dim(testdji)[1],dim(testdji)[2]))

Training,	validating,	and	testing	data	is	normalized	using	the	following	commands.	t()	is	used	for
transposing	of	the	data	frame,	matrix,	or	vector:	>norm_traindji<-	(traindji	-	t(trainme*t(trainidn)))	/
t(trainstd*t(trainidn))	>norm_validji<-	(validji	-	t(trainme*t(valiidn)))	/	t(trainstd*t(valiidn))
>norm_testdji<-	(testdji	-	t(trainme*t(testidn)))	/	t(trainstd*t(testidn))

The	previously	defined	normalized	data	consists	of	price	and	indicator	values.	We	should	also	define
training,	validating,	and	testing	period	direction	using	the	following	commands:	>traindir<-
direction[trainrow,1]	>validir<-	direction[valirow,1]	>testdir<-	direction[testrow,1]

Now,	I	assume	the	package	nnet()	is	installed	on	your	machine.	If	not,	you	should	install.package()
to	install	it.	Once	installed,	you	should	use	the	following	line	to	load	this	into	the	workspace:
>library(nnet)

The	following	line	sets	the	seed	for	the	neural	network,	otherwise	every	time	the	neural	network	will	start
with	some	random	weights	and	output	will	differ.	We	should	use	set.seed()	to	get	the	same	output	every
time	you	run	this	command.	The	next	line	explains	neural	network	fitting,	where	the	first	parameter	is	the
set	of	all	normalized	columns,	the	second	parameter	is	the	target	vector	for	training	period	dates	which
consist	of	directions,	the	third	parameter	is	the	number	of	neurons	in	the	hidden	layer,	and	the	fourth
parameter	is	the	trace,	which	prints	output	at	the	end	of	execution.	I	used	hidden	layer	neurons	as	4;
however,	you	should	optimize	this	parameter.	I	do	not	want	output	to	get	printed	at	the	end	of	the	execution
unless	I	explicitly	want	it	so	I	use	trade=F:	>set.seed(1)	>model<-
nnet(norm_traindji,class.ind(traindir),size=4,trace=F)

In	the	second	parameter,	you	must	have	observed	the	use	of	the	class.ind()	function.	This	function
converts	three	classes	to	three	columns	where	every	column	corresponds	to	each	class	and	each	column
has	1	at	the	place	where	it	has	the	same	class,	otherwise	0.

You	can	see	the	model	output	using	the	following:

>model

a	15-4-3	network	with	79	weights

There	are	a	few	more	parameters	in	nnet()	which	you	can	set	as	per	your	requirement.	For	more
information	on	nnet(),	you	should	type	the	following	command	on	the	command	prompt:	>	?	nnet

This	explains	the	neural	network	architecture,	which	is	15-4-3.	This	shows	three	layers;	the	first	layer
(input	layer),	second	layer	(hidden	layer),	and	third	layer	(output	layer)	have	15,	4,	and	3	neurons
respectively,	and	79	generated	weight	parameters.	You	can	see	that	the	number	of	neurons	in	the	first	layer
is	equal	to	the	number	of	columns	in	norm_traindji:	>dim(norm_traindji)	[1]	1006	15

You	can	see	that	output	has	15	columns,	which	is	the	same	as	the	number	of	input	data	features.	That
number	of	columns	are	15	so	does	the	number	of	neuron	in	input	layer.	The	second	parameter	is	the
number	of	neurons	in	the	hidden	layer,	which	is	provided	as	input	in	nnet()	(in	our	case,	this	is	4),	and
the	final	parameter	is	the	number	of	neurons	in	the	output	layer,	which	is	3,	the	same	as	the	number	of
directions	(Up,	Down	and	NoWhere).	You	must	use	predict()	using	the	trained	neural	network	over	the
validating	dataset:	>vali_pred<-	predict(model,norm_validji)	>head(vali_pred)	Down	NoWhere	Up
2014-01-02	01.336572e-01	1	2014-01-03	0	1.336572e-01	1	2014-01-06	0	1.336572e-01	1	2014-01-07
0	1.336572e-01	1	2014-01-08	0	8.666505e-02	1	2014-01-09	0	5.337864e-07	1

Now,	we	have	to	figure	out	the	predicted	direction	using	the	above	information.	I	define	0.5	as	the
threshold	and	pick	directions	which	have	a	value	greater	than	0.5.	The	first	line	creates	a	data	frame	of
length	equal	to	the	vali_pred	length.	The	next	commands	are	used	for	each	class	one	by	one;	it	checks
condition	and	writes	the	name	of	class	where	vali_pred	is	greater	than	0.5:	>vali_pred_class<-
data.frame(matrix(NA,dim(vali_pred)[1],1))	>vali_pred_class[vali_pred[,"Down"]	>	0.5,1]	<-
"Down"	>vali_pred_class[vali_pred[,"NoWhere"]	>	0.5,1]	<-	"NoWhere"
>vali_pred_class[vali_pred[,"Up"]	>	0.5,1]	<-	"Up"

Now	we	are	going	to	create	a	confusion	matrix	to	check	for	its	accuracy.	First	of	all,	load	the	caret
package	into	the	workspace	and	use	confusionMatrix()	over	the	predicted	class	and	original	class	for
the	validating	dataset:	>library(caret)	>matrix<-	confusionMatrix(vali_pred_class[,1],validir)	>matrix
Confusion	Matrix	and	Statistics	Reference	Prediction	Down	NoWhere	Up	Down	33	3	0	NoWhere	6
125	8	Up	0	15	62	Overall	Statistic	Accuracy	:	0.873	95%	CI	:	(0.8255,	0.9115)	No	Information	Rate
:	0.5675	P-Value	[Acc>NIR]	:	<2.2e-16	Kappa	:	0.7811	Mcnemar'sTest	P-Value	:	NA	Statistics	by
Class:	Class:	Down	Class:	NoWhereClass:	Up	Sensitivity	0.8462	0.8741	0.8857	Specificity	0.9859
0.8716	0.9176	PosPred	Value	0.9167	0.8993	0.8052	NegPred	Value	0.9722	0.8407	0.9543	Prevalence
0.1548	0.5675	0.2778	Detection	Rate	0.1310	0.4960	0.2460	Detection	Prevalence	0.1429	0.5516
0.3056	Balanced	Accuracy	0.9160	0.8728	0.9016

If	you	look	at	the	accuracy	level	in	the	result	output,	you	can	see	accuracy	is	87%	and	this	level	of

accuracy	is	quite	good.	This	87%	accuracy	for	a	model	trained	on	training	data	and	accuracy	is	tested	on
validating	data.	Now	we	should	also	check	accuracy	on	testing	data	and	check	its	generalization	power.
Normalization	of	the	testing	dataset	is	already	above	so	I	go	to	the	predict()	command	right	away:
>test_pred<-	predict(model,norm_testdji)

Classes	for	the	testing	data	are	defined	as	the	same	as	the	validating	data:	>test_pred_class<-
data.frame(matrix(NA,dim(test_pred)[1],1))	>test_pred_class[test_pred[,"Down"]	>	0.5,1]	<-
"Down"	>test_pred_class[test_pred[,"NoWhere"]	>	0.5,1]	<-	"NoWhere"
>test_pred_class[test_pred[,"Up"]	>	0.5,1]	<-	"Up"

ConfusionMatrix()	is	generated	for	testing	data	using	the	following	command	and	accuracy	on	testing
dataset	is	82%	as	can	be	seen	here;	this	prediction	accuracy	is	very	similar	to	the	prediction	accuracy	on
the	validating	dataset.	We	found	results	are	consistently	good	as	compared	to	the	validating	data:
>test_matrix<-	confusionMatrix(test_pred_class[,1],testdir)	>test_matrix	Confusion	Matrix	and
Statistics	Reference	Prediction	Down	NoWhere	Up	Down	31	4	0	Nowhere	26	138	8	Up	0	6	38
Overall	Statistics	Accuracy	:	0.8247	95%	CI	:	(0.7719,	0.8696)

Consistency	in	accuracy	across	validating	and	testing	datasets	shows	its	generalization	power	and	this
model	got	good	generalization	power.	Now,	as	we	have	got	classes,	the	next	thing	is	we	should	use	these
classes	for	signal	generation.	People	buy	when	they	anticipate	Up	direction	and	sell	when	they	anticipate
Down	direction.	So	I	generate	signals	using	the	same	human	psychology	and	the	following	command	does
that	for	you:	>signal<-	ifelse(test_pred_class	=="Up",1,ifelse(test_pred_class	=="Down",-1,0))
Return	ofdji	closing	price	is	calculated	below	>	ret<-	ret[testrow]

Trade	return	is	calculated	as	defined	here.	Lag()	is	used	over	signal	as	the	signal	generated	in	the
previous	session	contributes	to	trade	return.	I	am	assuming	cost	as	0:	>cost<-	0	>trade_ret<-	ret	*
Lag(signal)-	cost

To	evaluate	the	performance	of	the	strategy,	we	have	to	load	the	package	and	use	all	relevant	commands
defined	in	the	following	section:	>library(PerformanceAnalytics)	>cumm_ret<-
Return.cumulative(trade_ret)	>annual_ret<-	Return.annualized(trade_ret)

The	following	commands	generate	Figure	6.2,	which	shows	cumulative	return,	daily	return,	and
drawdown.	We	can	see	the	cumulative	return	of	the	strategy	is	negative.	Generating	profitable	strategy	is
beyond	the	scope	of	this	book.	This	book	only	explains	how	one	should	go	about	implementing	strategy
using	R:	>charts.PerformanceSummary(trade_ret)

The	output	is	as	follows:

	

	

	

Figure	6.2:	Cumulative	return,	daily	return,	and	drawdown	for	DJI

Deep	neural	network
Deep	neural	networks	are	under	the	broad	category	of	deep	learning.	In	contrast	to	neural	networks,	deep
neural	networks	contain	multiple	hidden	layers.	The	number	of	hidden	layers	can	vary	from	problem	to
problem	and	needs	to	be	optimized.	R	has	many	packages,	such	as	darch,	deepnet,	deeplearning,	and
h20,	which	can	create	deep	networks.	However,	I	will	use	the	deepnet	package	in	particular	and	apply	a
deep	neural	network	on	DJI	data.	The	package	deepnet	can	be	installed	and	loaded	to	the	workspace
using	the	following	commands:	>install.packages('deepnet')	>library(deepnet)

I	will	use	set.seed()	to	generate	uniform	output	and	dbn.dnn.train()	is	used	for	training	deep	neural
networks.	The	parameter	hidden	is	used	for	the	number	of	hidden	layers	and	the	number	of	neurons	in
each	layer.

In	the	below	example,	I	have	used	a	three	hidden	layer	structure	and	3,	4,	and	6	neurons	in	the	first,
second,	and	third	hidden	layers	respectively.	class.ind()	is	again	used	to	convert	three	directions	into
column	vector,	where	each	column	represents	one	direction:	>set.seed(1)	>model<-
dbn.dnn.train(norm_traindji,class.ind(traindir),hidden=c(3,4,6))

The	following	command	is	to	generate	the	output	of	three	classes	using	the	normalization	validation
dataset:	>nn.predict(model,norm_validji)

To	obtain	the	accuracy	of	the	model	over	the	validation	dataset,	you	can	also	use	following	command.	I
chose	t=0.4	just	for	the	purpose	of	showing	results.	You	should	use	a	value	as	per	your	requirement.	It
will	create	each	column	of	output	to	certain	direction	if	its	value	is	greater	than	0.4:
>nn.test(model,norm_validji,class.ind(validir),t=0.4)	[1]	0.7222222

H2o	is	another	package	which	can	be	used	for	deep	neural	network	learning.	It	is	implemented	in	Java	and
can	use	multithreads	and	multinodes	of	the	CPU;	however,	deepnet	is	implemented	in	R	itself	and	uses
only	a	single	thread	and	doesn't	have	the	flexibility	to	use	multithreads	and	multinodes	of	the	CPU.	The
following	commands	install	and	load	it	into	the	workspace:	>install.packages(h2o)	>library(h2o)

Next	I	combined	the	normalized	training	data	and	direction	into	one	variable.	I	converted	the	normalized
data	into	a	data	frame	as	the	original	data	in	xts,	zoo	format.	As	the	normalized	training	data	is	numeric,
if	I	had	not	converted	it	into	a	data	frame	then	adding	traindir,	which	is	character,	would	have
converted	traindir	to	NAs.	To	avoid	this,	I	used	a	data	frame	in	the	following	commands	and	the	class
of	the	input	variables	can	be	verified	using	the	next	two	commands:	>data<-
cbind(as.data.frame(norm_traindji),traindir)	>class(norm_traindji)	[1]	"xts"	"zoo"	>class(traindir)
[1]	"character"

Once	I	am	done	with	creating	a	variable	then	I	convert	it	into	an	h2o	object	because	model	fitting	requires
input	data	to	be	in	h2o	format.	In	the	following	command,	the	first	parameter	is	the	variable	which	I
would	like	to	be	converted	and	the	second	parameter	is	the	name	of	the	class	in	which	we	would	like	the
first	parameter	to	be	converted.

In	the	following	command,	I	would	like	to	convert	data	into	h2o	type.	This	can	also	be	verified	using	the

second	command:	>datah2o<-	as.h2o(data,"h2o")	>class(datah2o)	[1]	"H2OFrame"

We	looked	into	the	dimension	of	the	h2o	class	object	which	I	just	created,	where	the	last	column	is	the
direction	vector	and	the	remaining	columns	are	normalized	data	columns:	>dim(datah2o)	[1]	1006	16

Below,	h2o.deeplearning()	trains	a	deep	neural	network	with	a	four	hidden	layer	architecture	and	the
number	of	neurons	is	4,5,2,	and	7	respectively	in	each	hidden	layer.	The	first	parameter	is	the	vector	of
column	number	1	to	15	assumed	as	input	data	and	the	second	parameter	16	implies	the	16th	column	as
output	supplied	to	the	deep	neural	network	for	training.	The	third	parameter	is	datah2o,	which	is	supplied
for	deep	neural	network	fitting,	and	the	fourth	parameter	is	hidden.	The	parameter	hidden	has	important
significance	here,	which	shows	the	total	number	of	hidden	layers,	and	the	following	example	shows	four
hidden	layers:	the	first	hidden	layer	has	4	neurons,	the	second	has	5	hidden	neurons,	and	the	third	and
fourth	layers	have	2	and	7	neurons:	>	model	<-
h2o.deeplearning(1:15,16,training_frame=datah2o,hidden=c(4,5,2,7))	>vali_pred<-
predict(model,as.h2o(norm_validji,"h2o"))	predict	Down	NoWhere	Up	1	Up	8.774719e-06
0.05996300	0.9400282	2	Up	4.715592e-06	0.04561811	0.9543772	3	Up	8.522070e-06	0.06120060
0.9387909	4	Up	1.384947e-06	0.02668458	0.9733140	5	Up	3.698133e-06	0.04144544	0.9585509	6	Up
2.016126e-06	0.03151435	0.9684836	[252	rows	x	4	columns]

As	vali_pred	is	of	H2OFrame,	we	should	convert	it	to	a	data	frame	to	apply	the	following	operations:
>vali_pred<-	as.data.frame(vali_pred)	>vali_pred_class<-	data.frame(matrix(NA,dim(vali_pred)
[1],1))	>vali_pred_class[vali_pred[,"Down"]	>	0.5,1]	<-	"Down"
>vali_pred_class[vali_pred[,"NoWhere"]	>	0.5,1]	<-	"NoWhere"
>vali_pred_class[vali_pred[,"Up"]	>	0.5,1]	<-	"Up"

I	used	the	caret	package	and	confusionMatrix()	to	create	a	misclassification	matrix:	>library(caret)
>vali_matrix<-	confusionMatrix(vali_pred_class[,1],validir)

As	we	have	done	this	for	validation	dataset,	if	accuracy	percentage	is	within	desired	limit.	We	should	go
ahead	and	predict	directions	using	the	testing	data	and	use	those	predicted	directions	to	generate	trading
signals	as	generated	in	the	Neural	network	section.	To	generate	signal	and	performance	of	strategy,	you
should	use	the	command	mentioned	in	the	Neural	network	section.

K	means	algorithm
The	K	means	algorithm	is	an	unsupervised	machine	learning	algorithm.	Unsupervised	learning	is	another
way	of	classifying	the	data	as	it	does	not	require	labeling	of	the	data.	In	reality,	there	are	many	instances
where	labeling	of	the	data	is	not	possible,	so	we	require	them	to	classify	data	based	on	unsupervised
learning.	Unsupervised	learning	uses	the	similarity	between	data	elements	and	assigns	each	data	point	to
its	relevant	cluster.	Each	cluster	has	a	set	of	data	points	which	are	similar	in	nature.	The	K	means
algorithm	is	the	most	basic	unsupervised	learning	algorithm	and	it	just	requires	data	to	plug	into	the
algorithm	along	with	the	number	of	clusters	we	would	like	it	to	cluster	returning	the	vector	of	cluster
labeling	for	each	data	point.	I	used	normalized	data	along	with	the	number	of	clusters.	I	used	the	in-
sample	data	which	was	used	during	logistic	regression,	to	be	divided	into	three	clusters.

set.seed()	is	used	to	have	the	same	output	in	every	iteration;	without	using	set.seed(),	the	output
changes	every	time:

>clusters<-	3

>set.seed(1)

Normalized	in-sample	and	out-sample	data	has	direction	(labels)	as	the	last	column,	which	is	not	required
for	unsupervised	learning.	So	I	removed	the	last	column	in	both	of	these	datasets	using	the	following
command:

>norm_isdji<-	norm_isdji[,-dm[2]]

>norm_osdji<-	norm_osdji[,-dm[2]]

Now	I	do	not	have	any	labeling	for	this	data	and	run	kmeans():

>model<-	kmeans(norm_isdji,clusters)

model$cluser	returns	the	relevant	cluster	number	corresponding	to	each	data	point	and	head()	is	used
to	print	out	the	first	few:

>head(model$cluster)

2010-01-04		2010-01-05				2010-01-06					2010-01-07				2010-01-08	

				3											3																3														3												3																																																				

The	preceding	command	shows	the	first	few	data	points	belong	to	cluster	number	3.	Similarly,	centers	of
final	clusters	can	be	extracted	using	the	following	command:

>model$center

The	number	of	data	points	in	each	cluster	can	be	extracted	using	the	following	line	of	command:

>model$size

					260									434												564

As	we	are	using	k	means	to	cluster,	which	is	unsupervised	learning,	performance	or	accuracy	can	be
calculated	using	the	ratio	of	the	sum	of	squares	to	the	total	sum	of	squares.	The	sum	of	squares	between
clusters	and	the	total	sum	of	squares	can	be	extracted	using	the	following	commands:

>model$tot.withinss

9703.398

>model$totss

19129.26

The	ratio	of	these	values	indicates	the	sum	of	squares	within	clusters	with	respect	to	the	total	sum	of
squares.	In	our	case,	it	is	around	50.7%,	as	is	shown	below,	which	shows	the	sum	of	squares	within
cluster	is	almost	half	of	the	total	sum	of	squares.	The	model	which	minimizes	this	ratio	is	chosen	over	a
range	of	models.	This	is	a	minimization	problem:

>model$tot.withinss	/	model$totss

0.5072543

If	we	are	satisfied	with	the	accuracy	of	the	algorithm,	we	will	go	ahead	and	use	this	fitted	model	to
predict	clusters	for	the	out-sample	dataset,	which	can	be	done	using	the	predict()	command:

>ospredict<-	cl_predict(model,norm_osdji)

The	next	line	extracts	the	first	few	predicted	cluster	numbers	for	the	out-sample	data	using	head():

>head(ospredict)

2						2								2									2											2											2	

This	algorithm	assigns	each	data	point	from	the	out-sample	dataset	into	any	one	of	the	clusters,	where
each	cluster	belongs	to	one	of	the	market	directions,	that	is,	Up,	Down,	and	Nowhere.	It	is	very	important	to
figure	out	upfront	which	cluster	represents	Up	and	which	ones	represent	Down	and	Nowhere.	Once	you
recognize	each	cluster	as	either	Up,	Down,	or	Nowhere,	we	can	enter	a	relevant	trade	when	a	data	point
falls	in	the	relevant	cluster.	For	example,	in	the	preceding	case,	the	output	is	two	for	the	first	six	data
points,	which	implies	that	these	data	points	lie	in	the	same	cluster,	but	we	do	not	know	whether	this	is	the
Up	cluster,	Down	cluster,	or	Nowhere	cluster.	You	can	figure	out	this	using	the	average	price	of	data	points
in	one	cluster	and	if	the	average	is	greater	than	a	certain	threshold	from	the	first	data	point	then	you	can
consider	it	as	the	Up	cluster;	if	the	average	price	is	less	than	a	certain	threshold	from	the	first	data	point
then	this	is	the	Down	cluster;	and	it	is	the	Nowhere	cluster	if	the	average	price	is	within	a	certain	threshold
above	and	below	the	first	data	point.	There	are	other	techniques	as	well	to	figure	out	the	class	of	the
cluster;	you	can	use	any	technique,	whichever	you	would	like	to	use.	When	a	data	point	falls	in	the	Up
cluster,	we	enter	long	trade;	it	happens	for	the	other	two	clusters	as	well.	We	should	design	a	trading
strategy	by	looking	into	each	cluster.	Behavior	recognition	is	critical	as	this	will	help	us	design	a	trading
strategy.	We	should	know	which	cluster	represents	the	Up,	Down,	or	Nowhere	direction.	We	should
generate	a	trading	signal	and	return	using	the	example	mentioned	in	the	Neural	network	section.

K	nearest	neighborhood
K	nearest	neighborhood	is	another	supervised	learning	algorithm	which	helps	us	to	figure	out	the	class	of
the	out-sample	data	among	k	classes.	K	has	to	be	chosen	appropriately,	otherwise	it	might	increase
variance	or	bias,	which	reduces	the	generalization	capacity	of	the	algorithm.	I	am	considering	Up,	Down,
and	Nowhere	as	three	classes	which	have	to	be	recognized	on	the	out-sample	data.	This	is	based	on
Euclidian	distance.	For	each	data	point	in	the	out-sample	data,	we	calculate	its	distance	from	all	data
points	in	the	in-sample	data.	Each	data	point	has	a	vector	of	distances	and	the	K	distance	which	is	close
enough	will	be	selected	and	the	final	decision	about	the	class	of	the	data	point	is	based	on	a	weighted
combination	of	all	k	neighborhoods:	>library(class)

The	K	nearest	neighborhood	function	in	R	does	not	need	labeled	values	in	the	training	data.	So	I	am	going
to	use	the	normalized	in-sample	and	normalized	out-sample	data	created	in	the	Logistic	regression
section	and	remove	the	last	column	in	the	normalized	in-sample	and	normalized	out-sample	data:
>norm_isdji<-	norm_isdji[,-dm[2]]	>norm_osdji<-	norm_osdji[,-dm[2]]

Labeling	of	the	training	data	is	a	vector	of	three	directions,	that	is,	Up,	Down,	and	Nowhere,	which	is
constructed	using	the	following	command:	>lagret<-	(dji	-	Lag(dji,20))	/	Lag(dji,20)

lagret	is	the	return	over	the	last	20	data	points	and	is	used	to	generate	three	directions	as	in	the	Neural
network	section:	>direction[lagret>	0.02]	<-	"Up"	>direction[lagret<	-0.02]	<-	"Down"
>direction[lagret<	0.02	&lagret>	-0.02]	<-	"NoWhere"	>isdir<-	direction[isrow]	>osdir<-
direction[osrow]

I	choose	three	neighborhoods	and	fix	the	set.seed()	value	to	generate	the	same	output	every	time:
>neighborhood<-	3	>set.seed(1)	>model<-	knn(norm_isdji,norm_osdji,isdir,neighborhood)

The	knn()	model	has	the	first	three	mandatory	parameters	which	are	the	normalized	in-sample	data,	the
normalized	out-sample	data,	and	the	training	labeled	data	in	our	case.	The	fourth	parameter	is	optional;	I
supplied	3	as	input	here.	If	this	is	not	supplied	by	the	user,	R	will	consider	the	default	value,	which	is	1.
However,	3	is	not	fixed;	it	needs	to	be	optimized	using	multiple	values	of	neighborhood.	The	knn()
function	returns	classes	over	the	out-sample	data	which	can	be	checked	using	the	following	command:
>head(model)	[1]NoWhere	Nowhere	Nowhere	Nowhere	NoWhere

Summary()	over	the	model	generates	the	total	number	of	data	points	in	each	class,	as	you	can	see	in	the
following	command.	It	has	generated	44,	172,	and	36	data	points	into	the	Down,	Nowhere,	and	Up	classes
respectively:	>summary(model)	Down	NoWhere	Up	44	172	36

We	are	not	sure	about	the	accuracy.	We	have	to	test	it	for	accuracy	using	the	following	commands.
confusionMatrix()	generates	a	matrix	of	counts	for	correct	and	wrong	predictions:	>library(caret)
>matrix<-	confusionMatrix(model,osdir)	>matrix	Confusion	Matrix	and	Statistics	Reference
Prediction	Down	NoWhere	Up	Down	32	12	0	NoWhere	26	133	13	Up	0	3	3	Overall	Statistics
Accuracy	:	0.7857	95%	CI	:	(0.7298,	0.8347)	No	Information	Rate	:	0.5873	P-Value	[Acc>NIR]	:
2.173e-11

We	also	have	to	minimize	off-diagonal	elements	as	these	are	wrong	classified	classes.	Diagonal	elements
can	be	extracted	using	the	following	command:	>diag(matrix$table)	Down	NoWhere	Up	32	133	33

We	can	use	a	for	loop	over	the	neighborhood	varying	from	1	to	30	and	find	the	accuracy	at	each	value.
We	can	pick	the	optimal	value	of	k,	which	has	the	highest	and	consistent	accuracy	in	its	neighborhood.

The	following	few	lines	of	codes	explain	this.	The	For	loop	is	used	for	values	from	1	to	30.	Inside	the
for	loop,	I	fit	model	for	every	value	of,	that	is,	confusionMatrix()	calculate	matrix	for	every	i
followed	by	calculation	of	elements	as	diagonal	and	total	number	of	elements	in	out-sample	data.	The	sum
of	all	elements	of	matrix$table	is	equal	to	the	number	of	data	points	in	the	out-sample	data.	The
misclassification	number	is	calculated	by	subtracting	diag	from	the	total	number	of	points	and	accuracy	is
calculated	by	dividing	it	by	the	total	number	of	data	points:	>	accuracy<-	NULL	>for(i	in	c(1:30))	{
model<-	knn(isdji,osdji,isdir,i)	matrix<-	confusionMatrix(model,osdir)	diag<-	sum(diag(matrix$table))
total<-	sum(matrix$table)	accuracy[i]	<-	(total	-	diag)	/	total	}

We	can	check	the	variable	accuracy	output	using	head():	>head(accuracy)	0.4404762	0.4087302
0.3452381	0.4563492	0.4801587	0.4642857

The	following	command	plot()	generates	Figure	6.3,	which	explain	accuracy	variation	across	the	value
of	neighborhood.	Figure	6.3	clearly	explains	the	importance	of	neighborhood,	as	error	is	minimum	for
k=14	which	is	assumed	to	be	the	optimal	value.	However,	k=15	spike	the	error	which	means	k=14	is	not
stable	in	its	neighborhood.	The	value	k=12	is	considered	stable	in	its	neighborhood	as	well,	so	it	is	left	to
the	reader,	how	you	would	like	to	pick	the	optimal	value:	>plot(accuracy,	type="l")

	

	

	

Figure	6.3:	Accuracy	level	for	KNN	classifier

Support	vector	machine
Support	vector	machine	is	another	supervised	learning	algorithm	that	can	be	used	for	classification	and
regression.	It	is	able	to	classify	data	linearly	and	nonlinearly	using	kernel	methods.	Each	data	point	in	the
training	dataset	is	labeled,	as	it	is	supervised	learning,	and	mapped	to	the	input	feature	space,	and	the	aim
is	to	classify	every	point	of	new	data	to	one	of	the	classes.	A	data	point	is	an	N	dimension	number,	as	N	is
the	number	of	features,	and	the	problem	is	to	separate	this	data	using	N-1	dimensional	hyperplane	and	this
is	considered	to	be	a	linear	classifier.	There	might	be	many	classifiers	which	segregate	the	data;	however,
the	optimal	classifier	is	one	which	has	the	maximum	margin	between	classes.	The	maximum	margin
hyperplane	is	one	which	has	the	maximum	distance	from	the	closest	point	in	each	size	and	the
corresponding	classifier	is	called	the	maximum	margin	classifier.	Package	e1071	has	all	functionalities
related	to	the	support	vector	machine	so	I	am	going	to	install	it	first	using	the	following	command:

>install.packages("e1071",dependencies=TRUE)

Once	it	is	installed,	I	am	going	to	load	it	into	the	workspace	using	the	following	command:

>library(e1071)

I	am	going	to	use	the	same	normalized	in-sample	and	out-sample	data	that	was	used	in	the	previous
section.	The	svm()	function	takes	a	few	more	parameters,	such	as	type	of	support	vector	machine,
kernel	type,	and	a	few	more.	The	type	parameter	has	the	option	to	train	the	support	vector	machine	with
respect	to	a	classification	or	regression	problem;	by	default,	it	considers	classification	problems.	The
kernel	type	has	many	options	to	choose	from,	such	as	linear,	polynomial,	radial,	and	sigmoid,	and	the
linear	kernel	type	is	set	as	the	default	parameter.	The	following	command	explains	the	use	of	support
vector	machine	using	only	the	first	two	parameters	and	the	remaining	default	parameters:

>model<-	svm(norm_isdji,as.factor(isdir))

The	output	of	the	svm()	function	is	saved	in	the	variable	model	and	can	be	seen	by	typing	the	variable
name	model	on	the	command	prompt:

>model

Call:

svm.default(x	=	norm_isdji,	y	=	as.factor(isdir))

Parameters:

SVM-Type:		C-classification	

SVM-Kernel:		radial	

cost:		1													gamma:		0.06666667	

Number	of	Support	Vectors:		505

The	preceding	results	show	the	type	of	fitted	support	vector	machine,	and	the	kernel	type	which	is	used	to
fit	the	model.	predict()	helps	to	predict	direction	for	the	out-sample	data:

>pred<-	predict(model,norm_osdji)

The	first	few	predicted	directions	can	be	seen	using	the	following	line	of	command:

>head(pred)

	1							2							3						4							5							

NoWhere	NoWhere	NoWhere	NoWhere	NoWhere

The	table()	command	generates	a	misclassification	matrix	and	clearly	shows	45	misclassified	data
points	in	total:

>table(pred,	osdir)	

osdir	

	pred										Down											NoWhere													Up	

		Down										32														6																		0	

NoWhere									26													139																10	

		Up													0														3																	36	

If	you	would	like	to	see	the	vectors	generated	by	support	vector	machine,	you	can	do	so	using	the
following	command:

>model$SV

You	can	also	see	the	corresponding	index	values	using	the	following	command:

>model$index

The	first	few	index	values	can	be	seen	using	the	following	command:

>head(model$index)

[1]		1		4		5	11	12	34

The	corresponding	coefficients	can	be	accessed	using	the	following	command:

>model$coefs

Decision	tree
Tree-based	learning	algorithms	are	one	of	the	best	supervised	learning	methods.	They	generally	have
stability	over	results,	and	great	accuracy	and	generalization	capacity	to	the	out-sample	dataset.	They	can
map	linear	and	nonlinear	relationships	quite	well.	It	is	generally	represented	in	the	form	of	a	tree	of
variables	and	its	results.	The	nodes	in	a	tree	are	variables	and	end	values	are	decision	rules.	I	am	going
to	use	the	package	party	to	implement	a	decision	tree.	This	package	first	need	to	be	installed	and	loaded
into	the	workspace	using	the	following	commands:

>install.packages("party")

>library(party)

The	ctree()	function	is	the	function	to	fit	the	decision	tree	and	it	requires	a	formula	and	data	as
mandatory	parameters	and	it	has	a	few	more	optional	variables.	The	normalized	in-sample	and
normalized	out-sample	data	does	not	have	labels	in	the	data	so	we	have	to	merge	labels	in	the	data.

The	following	commands	bind	labels	into	the	normalized	in-sample	and	normalized	out-sample	data	and
add	a	column	name	to	the	last	column	for	both	datasets:

>norm_isdji<-	cbind(norm_isdji,isdir)

>norm_osdji<-	cbind(norm_osdji,osdir)

>colnames(norm_isdji)[dim(norm_isdji)[2]]	<-	"Direction"

>colnames(norm_osdji)[dim(norm_osdji)[2]]	<-	"Direction"

Now	both	datasets	have	labeled	data	in	the	dataset	and	we	now	choose	to	fit	the	decision	tree	using
ctree().

The	first	parameter	is	the	formula	which	has	Direction,	that	is,	labels	as	dependent	variable	and	dot	(.)
on	the	other	side	of	the	formula,	which	means	we	are	considering	all	other	variables	as	independent
variables.

The	second	parameter	is	the	normalized	in-sample	data:

>model<-	ctree(Direction	~	.,norm_isdji)

You	can	use	print()	to	see	the	fitted	model	output.	The	variable	model	is	the	output	of	the	model	so	use
the	following	command	to	see	what	it	contains:

>print(model)

If	you	would	like	to	plot	the	model,	this	can	be	done	using	plot():

>plot(model)	

You	can	also	use	summary()	to	get	the	output	in	summarized	form:

>summary(model)

predict()	can	be	used	to	estimate	the	labels	using	the	fitted	model	and	out-sample	data.	I	calculated	the

dimension	of	the	normalized	out-sample	data	and	plugged	this	data,	except	the	last	column,	into
predict():

>dm<-	dim(norm_osdji)

>pred<-	predict(model,norm_osdji[,1:(dm[2]-1)])

The	first	few	values	of	pred	can	be	seen	using	head()	as	shown	here:

>head(pred)

					Direction

[1,]		2.040816

[2,]		2.040816

[3,]		2.040816

[4,]		2.040816

The	command	plot()	generates	a	graph	for	the	predicted	variable	pred,	which	is	shown	in	the	figure
which	follows:

>plot(pred)

The	following	figure	clearly	shows	three	classes:	one	class	is	between	1.0	and	1.5,	the	second	class
around	2.0,	and	the	third	class	around	3.0.	Data	points	are	clearly	distinguished	based	on	the	clustered
and	separation	criteria:

	

	

	

Figure	6.4:	Predicted	values	for	normalized	out-sample	data

Random	forest
Random	forest	is	one	of	the	best	tree-based	methods.	Random	forest	is	an	ensemble	of	decision	trees	and
each	decision	tree	has	certain	weights	associated	with	it.	A	decision	of	the	random	forest	is	decided	like
voting,	as	the	majority	of	decision	tree	outcomes	decide	the	outcome	of	the	random	forest.	So	we	start
using	the	randomForest	package	and	this	can	be	installed	and	loaded	using	the	following	commands:
>install.packages("randomForest")	>library(randomForest)

We	can	also	use	the	following	command	to	know	more	about	this	randomForest	package,	including
version,	date	of	release,	URL,	set	of	functions	implemented	in	this	package,	and	much	more:
>library(help=randomForest)

Random	forest	works	best	for	any	type	of	problem	and	handles	classification,	regression,	and
unsupervised	problems	quite	well.	Depending	upon	the	type	of	labeled	variable,	it	will	implement
relevant	decision	trees;	for	example,	it	uses	classification	for	factor	target	variables,	regression	for
numeric	or	integer	type	target	variables,	and	unsupervised	decision	tree	when	the	target	vector	is	not
defined	or	completely	unknown.	I	will	use	the	labeled	data	which	I	have	used	throughout	this	chapter:	the
normalized	in-sample	data	for	model	building	and	normalized	out-sample	data	for	model	validation.	You
can	see	the	column	names	of	the	input	data	using	the	following	commands:	>names(norm_isdji)	[1]
"DJI.Close"	"DJI.Close.1"	"DJI.Close.2"	"DJI.Close.3"	"DJI.Close.4"	"SMA"	"SMA.1"	"macd"
"signal"	"macd.1"	"signal.1"	"dn"	"mavg"	"up"	"pctB"

The	following	command	helps	you	to	know	the	number	of	independent	variables	in	the	input	data.	It
shows	our	input	dataset	is	going	to	have	15	independent	variables	which	can	be	seen	previously:
>length(names(norm_isdji))	[1]	15

As	the	labeled	data	has	three	classes,	Up,	Down,	and	Nowhere,	we	should	build	a	classification	random
forest.	For	classification,	the	randomForest()	function	accepts	labeled	data	as	a	factor	so	the	first	thing
is	we	should	check	the	labeled	data	type,	which	can	be	done	using	the	following	command	and	it	shows
the	labeled	data	is	character:	>class(isdir)	[1]	"character"

The	next	thing	is	we	should	convert	the	labeled	data	into	factors	as	randomForest()	accepts	factor
labeled	data	for	classification	problems.	The	following	two	lines	convert	character	data	into	factors:
>isdir<-	as.factor(isdir)	>osdir<-	as.factor(osdir)

Now,	if	we	check	the	class	of	the	labeled	data,	we	can	use	the	class()	function	again	and	the	following
command	shows	we	have	converted	character	data	type	to	factor:	>class(as.factor(isdir))	[1]	"factor"

Now	we	are	set	with	the	in-sample	and	out-sample	datasets	and	plug	these	datasets	into	randomForest()
using	the	following	command.	The	first	parameter	in	the	function	is	the	normalized	in-sample	independent
variables	data	frame,	the	second	parameter	is	in-sample	labels,	the	third	parameter	is	the	out-sample
independent	variables	data	frame,	the	fourth	parameter	is	out-sample	labels,	and	the	fifth	parameter	is	the
number	of	trees	to	be	used	for	random	forest	model	building	and	I	used	this	equal	to	500:	>model<-
randomForest(norm_isdji,	y=as.factor(isdir),	xtest=norm_osdji,	ytest=as.factor(osdir),	ntree=500)

However,	there	many	more	parameters	which	one	can	use	if	required.	If	you	want	to	know	more	about	the
other	parameters,	the	following	single	line	of	code	will	open	a	new	window	which	explains	everything
for	the	randomForest	function,	including	input	variables,	input	variables	type,	output	variables,
examples,	and	so	on:	>help(randomForest)

You	can	look	at	the	model	output	using	the	following	command.	First	it	shows	the	command	which	is	used
to	fit	the	model,	then	the	type	of	forest,	which	is	classification	in	our	case	as	the	labeled	data	was	factor
or	consisted	of	three	classes,	and	next	the	number	of	trees,	as	we	provided	500	as	parameter	in	the
previous	command.	It	also	calculates	a	confusion	matrix	for	the	in-sample	as	well	as	for	out-sample	data.
The	error	rate	for	the	in-sample	data	is	11.76%	and	21.03%	for	the	out-sample	data,	which	is	assumed	to
be	quite	good.	If	you	look	deep	into	the	in-sample	and	out-sample	confusion	matrix,	you	can	also	find	the
error	rate	for	each	class	separately.	In	the	case	of	the	in-sample	confusion	matrix,	the	fourth	column
contains	errors	which	are	11.34%.	14.40%,	and	9.55%	for	Down,	NoWhere,	and	Up	classes	respectively.
Similarly,	you	can	also	interpret	the	out-sample	confusion	matrix:	>print(model)	Call:	randomForest(x	=
norm_isdji,	y	=	as.factor(isdir),	xtest	=	norm_osdji,	ytest	=	as.factor(osdir),	ntree	=	500)	Type	of
random	forest:	classification	Number	of	trees:	500	No.	of	variables	tried	at	each	split:	3	OOB
estimate	of	error	rate:	11.76%	Confusion	matrix:	Down	NoWhere	Up	class.error	Down	211	27	0
0.11344538	NoWhere	19	416	51	0.14403292	Up	0	51	483	0.09550562	Test	set	error	rate:	21.03%
Confusion	matrix:	Down	NoWhere	Up	class.error	Down	26	32	0	0.55172414	NoWhere	6	138	4
0.06756757	Up	0	11	35	0.23913043

The	fitted	model	generates	errors	in	matrix	form	and	if	you	would	like	to	dive	deep	into	error	matrices,
you	can	look	into	the	matrix	format	using	head().	The	following	matrix	shows	the	error	rate	for	the	in-
sample	data	and	the	next	three	columns	for	each	class	separately	across	500	decision	trees:
>head(model$err.rate)	OOBDown	NoWhere	Up	[1,]	0.2159329	0.08791209	0.2967033	0.2009804
[2,]	0.1855263	0.16438356	0.2430556	0.1441718	[3,]	0.1911765	0.15508021	0.2320442	0.1712159	[4,]
0.1854991	0.16097561	0.2369077	0.1513158	[5,]	0.1901408	0.17129630	0.2534884	0.1428571

The	following	commands	plot	the	overall	in-sample	and	three	classes	errors	for	all	500	decision	trees
and	you	can	see	in	Figure	6.5	that	after	100	decision	trees,	there	is	no	significant	decrease	in	the	error:
>plot(model$err.rate[,1],type="l",ylim=c(0.05,0.3),ylab="Error")
>lines(model$err.rate[,2],col="red")	>lines(model$err.rate[,3],col="green")
>lines(model$err.rate[,4],col="blue")

The	plot	looks	as	follows:

	

	

	

Figure	6.5:	Error	rate	for	500	decision	trees

If	you	want	to	extract	variables	which	help	to	control	error,	you	can	choose	those	variables	depending
upon	MeanDecreaseGinni.	MeanDecreaseGinni	can	be	accessed	using	the	following	lines	of	code:
>value<-	importance(model,type	=	2)	>head(value)	MeanDecreaseGini	DJI.Close	22.09961
DJI.Close.1	18.55651	DJI.Close.2	16.87061	DJI.Close.3	27.23347

Questions
1.	 What	is	machine	learning	and	how	it	being	used	in	the	capital	market?	Explain	in	brief.
2.	 What	is	logistic	regression	and	in	which	form	does	it	generate	its	output?
3.	 Write	a	small	piece	of	code	to	use	a	neural	network	for	any	stock	time	series.
4.	 How	does	a	confusion	matrix	explain	the	accuracy	of	a	model?
5.	 How	do	you	standardize	data	and	why	is	it	important	in	the	model	building	process?
6.	 How	is	support	vector	machine	different	from	logistic	regression?
7.	 Explain	supervised	and	unsupervised	learning	and	how	to	use	these	techniques	in	algorithmic

trading.
8.	 Write	a	small	piece	of	code	for	the	k	means	algorithm	using	any	one	stock	closing	price.
9.	 Apart	from	confusionMatrix(),	what	is	the	other	function	to	calculate	classification	and

misclassification	matrices?
10.	 What	is	the	difference	between	decision	tree	and	random	forest	and	how	are	features	selected	from

random	forest?

Summary
This	chapter	presents	advanced	techniques	which	are	implemented	for	capital	markets.	I	have	presented
various	supervised	and	unsupervised	learning	in	detail	along	with	examples.	This	chapter	particularly
used	Dow	Jones	Index	closing	price	as	dataset,	which	was	divided	into	in-sample	and	out-sample	data.
The	in-sample	data	was	used	for	model	building	and	the	out-sample	data	for	validation	of	the	model.
Overfitting	and	underfitting	generally	questions	the	generalization	capacity	of	the	model	which	can	be
understand	using	confusion	matrix.	The	accuracy	of	the	model	was	defined	using	confusionMatrix()	or
table().

There	are	various	types	of	risks	that	exists	in	the	market	and	in	the	next	chapter,	I	will	explain	how	to
calculate	risk	associated	with	various	investments,	in	particular	market	risk,	portfolio	risk,	and	so	on.	I
will	also	explain	Monte	Carlo	simulation	for	risk,	hedging	techniques,	and	credit	risk,	along	with	Basel
regulations.

Chapter	7.	Risk	Management
In	this	chapter,	we	are	going	to	discuss	the	various	types	of	risk	associated	with	the	banking	and	financial
domains.	Banks	and	financial	institutions	are	all	exposed	to	risk,	and	they	need	to	develop	risk
identification	and	risk	mitigation	mechanisms	with	the	implementation	of	regulatory	norms	to	stay
competitive	and	profitable.	In	this	chapter,	we	are	going	to	discuss	various	techniques	to	measure
different	types	of	risk	using	R.	It	also	includes	risk	pertaining	to	banking	operations	such	as	credit	risk,
fraud	detection,	and	Basel	regulations.

The	chapter	covers	the	following	topics:

Market	risk
Portfolio	risk
VaR
Monte	Carlo	simulations
Hedging
Basel	regulation
Credit	risk
Fraud	detection

Market	risk
The	risk	for	an	investor	to	encounter	losses	due	to	changes	in	overall	performance	of	the	market	in	which
he	has	invested,	is	known	as	market	risk.	Market	risk	is	a	kind	of	systematic	risk	which	cannot	be	tackled
with	diversification.	It	may	be	hedged.	The	risks	happening	due	to	recessions,	political	instability,	interest
rate	changes,	natural	disasters,	and	terrorist	attacks	are	examples	of	market	risks.	Market	risks	are
measured	differently	for	banks,	individual	stocks,	portfolios,	and	so	on.

Let	us	consider	how	market	risks	are	measured	for	individual	securities.	The	market	risk	of	a	stock	which
is	a	part	of	a	portfolio	is	measured	as	the	contribution	of	a	security	in	the	overall	risk	of	the	portfolio.	The
individual	stock	risk	is	measured	by	the	beta	coefficient,	which	is	the	volatility	of	stock	with	respect	to
the	market.

Let	us	run	regression	analysis	on	stock	IBM	as	dependent	variable	and	GPSC	index	as	the	independent
variable	and	try	to	estimate	the	beta.	It	can	be	done	by	executing	the	following	code,	which	uses	monthly
data	of	GPSC	and	IBM	both	between	2010	to	2016:

>	GPSCMonthlyUrl<-'http://ichart.yahoo.com/table.csv?

s=%5EGSPC&a=00&b=1&c=2010&d=00&e=1&f=2017&g=m'	

>	GPSCMonthlyData	<-	read.csv(GPSCMonthlyUrl)	

>	IBMMonthlyUrl<-'http://ichart.yahoo.com/table.csv?

s=IBM&a=00&b=1&c=2010&d=00&e=1&f=2017&g=m'	

>	IBMMonthlyData	<-	read.csv(IBMMonthlyUrl)	

>	DateRange	<-	GPSCMonthlyData$Date	==	IBMMonthlyData$Date	

>	GPSCPrice<-GPSCMonthlyData$Close[DateRange]	

>	IBMPrice<-IBMMonthlyData$Close[DateRange]	

>	GPSCReturns	<-	(GPSCPrice[1:(length(GPSCPrice)	-	1)]	-	

GPSCPrice[2:length(GPSCPrice)])	/	GPSCPrice[2:length(GPSCPrice)]	

>	IBMReturns	<-	(IBMPrice[1:(length(IBMPrice)	-	1)]	-	IBMPrice[2:length(IBMPrice)]	

)	/	IBMPrice[2:length(IBMPrice)]	

>	betafit	<-	lm(IBMReturns	~	GPSCReturns)	

>	result	<-	summary(betafit)	

>	beta	<-	result$coefficients[2,1]	

>	print(beta)	

It	gives	an	estimate	of	beta,	as	shown	here:

[1]	0.72390819	

Another	technique	used	by	investors	and	analysts	is	value	at	risk.	It	is	a	very	common	method	of
measuring	risk	in	financial	markets.	The	value	at	risk	method	is	a	well-known	and	established	risk
management	method,	but	it	comes	with	some	assumptions	that	limit	its	correctness.	For	instance,	one	of
the	assumptions	is	that	the	content	of	the	portfolio	being	measured	is	unchanged	over	a	provided	period.
So,	this	may	generate	good	results	for	short-term	horizons	but	will	not	be	such	an	accurate	measurement
for	long-term	horizons	of	investments,	because	it	is	more	exposed	to	changes	in	interest	rates	and
monetary	policies.	We	will	be	discussing	calculating	VaR	and	CVAR/ES	in	R	later	on.

Portfolio	risk
With	the	use	of	R	language,	we	can	manage	portfolios	better	by	mitigating	the	risk	and	portfolio
optimization.	To	avoid	the	risk	associated	with	portfolio	analysis,	diversification	of	the	portfolio	is
required,	with	the	selection	of	optimum	weights	for	the	portfolio's	constituents.

Let	us	try	to	find	the	optimal	weight	of	the	portfolio	whose	stocks	are	IBM	and	FB,	and	using	the	CAPM.
First,	let	us	get	the	relevant	data	by	executing	the	following	code:	>GPSCMonthlyUrl<-
'http://ichart.yahoo.com/table.csv?s=%5EGSPC&a=00&b=1&c=2015&d=00&e=1&f=2017&g=m'
>GPSCMonthlyData	<-	read.csv(GPSCMonthlyUrl)	>IBMMonthlyUrl<-
'http://ichart.yahoo.com/table.csv?s=IBM&a=00&b=1&c=2015&d=00&e=1&f=2017&g=m'
>IBMMonthlyData	<-	read.csv(IBMMonthlyUrl)	>FBMonthlyUrl<-'http://ichart.yahoo.com/table.csv?
s=FB&a=00&b=1&c=2015&d=00&e=1&f=2017&g=m'	>FBMonthlyData	<-	read.csv(FBMonthlyUrl)
>VMonthlyUrl<-'http://ichart.yahoo.com/table.csv?
s=V&a=00&b=1&c=2015&d=00&e=1&f=2017&g=m'	VMonthlyData	<-	read.csv(VMonthlyUrl)

It	is	monthly-level	data	between	2015	and	2016.

Now,	let	us	try	to	find	the	returns	for	the	preceding	data	for	close	prices	by	executing	the	following	code:
>	DateRange	<-	GPSCMonthlyData$Date	>	GPSCPrice<-GPSCMonthlyData$Close[DateRange]	>
IBMPrice<-IBMMonthlyData$Close[DateRange]	>	FBPrice<-FBMonthlyData$Close[DateRange]	>
VPrice<-VMonthlyData$Close[DateRange]	>	GPSCReturns	<-	(GPSCPrice[1:(length(GPSCPrice)	-	1)]
-	GPSCPrice[2:length(GPSCPrice)])	/	GPSCPrice[2:length(GPSCPrice)]	>	IBMReturns	<-	(
IBMPrice[1:(length(IBMPrice)	-	1)]	-	IBMPrice[2:length(IBMPrice)])	/	IBMPrice[2:length(IBMPrice)]
>	FBReturns	<-	(FBPrice[1:(length(FBPrice)	-	1)]	-	FBPrice[2:length(FBPrice)])	/
FBPrice[2:length(FBPrice)]	>	VReturns	<-	(VPrice[1:(length(VPrice)	-	1)]	-	VPrice[2:length(VPrice)])
/	VPrice[2:length(VPrice)]

It	generates	the	returns	for	all	the	series.

Now,	let	us	try	to	find	the	excess	return	for	all	the	series.	The	excess	return	is	given	by	monthly	return
minus	monthly	T-Bills	interest	rate	(let	it	be	.0015).	This	can	be	done	by	executing	the	following	code:	>
EGPSCReturns<-	GPSCReturns-.0015	>	EIBMReturns<-	IBMReturns-.0015	>	EFBReturns<-
FBReturns-.0015	>	EVReturns<-	VReturns-.0015

Next,	find	the	mean	and	SD	for	the	excess	returns	of	all	the	series.	It	is	given	by	executing	the	following
code:	>	MeanSD<-
rbind(cbind("GPSC",mean(EGPSCReturns),sd(EGPSCReturns)),cbind("FB",mean(EFBReturns),sd(EFBReturns)),cbind("IBM",mean(EIBMReturns),sd(EIBMReturns)),cbind("V",mean(EVReturns),sd(EVReturns)))
>	MeanSD

It	generates	the	following	output:

	

	

	

Figure	7.1:	Mean	and	standard	deviation	of	all	the	stocks	considered	Now,	let	us	find	out	the	beta	of	all
the	excess	returns	of	stocks	by	regressing	them	individually	against	the	excess	return	of	the	S&P	index.

This	can	be	done	by	executing	the	following	code:	>	lmIBM<-	lm(IBMReturns	~	EGPSCReturns)	>
summary(lmIBM)

It	gives	the	following	output:

	

	

	

Figure	7.2:	Output	summary	of	regression

This	shows	that	the	beta	for	IBM	is	1.1035670.

Similarly,	we	can	find	the	beta	for	FB	and	V.

So	using	the	CAPM,	the	excess	expected	return	for	IBM	is	given	as	follows:	Beta	of	IBM*expected
excess	return	of	GPSC	=1.1035670*(-.005955424)	=	-0.0065722094

According	to	the	single-factor	model,	the	variance	of	IBM	is	given	by	this	formula:

	

	

Figure	7.3:	Variance	given	by	single-factor	model	Here,	e	is	the	residual	error	coming	from	regression.

So	by	running	regression	for	all	the	independent	variables	and	calculating	excess	returns	and	variance,	we
have	the	following:

IBM FB V

Variance 0.002906 0.002949 0.455695

Beta 1.103567 0.423458 3.74228

Expected	excess	return -0.00657 -0.00252 -0.02229

The	covariance	matrix	can	be	calculated	using	the	following	formula:

	

	

Figure	7.4:	Covariance	formula

It	generates	the	following	matrix:

IBM FB V

IBM 0.001378 0.000529 0.004673

FB 0.000529 0.000203 0.001793

V 0.004673 0.001793 0.015848

Now,	let	us	find	the	optimal	weight	for	the	portfolio	by	executing	the	following	code:	>	returns_avg<-
matrix(c(-0.0180513406031643,-0.00357192217566396,0.12613583240944),nrow	=1)	>	covariance<-
matrix(c(0.001378118,0.000528808,0.004673302,0.000528808,0.000202913,0.001793228,0.004673302,0.001793228,0.015847524),nrow=3)

>	library(tseries)	>	sol<-portfolio.optim(x=returns_avg,covmat=covariance,	shorts=F)	>	sol$pw

It	generates	the	optimal	weight	as	given	in	the	following	table:

IBM FB V

0 0.70387703 0.29612297

VaR
Value	at	risk	is	a	measure	in	risk	management	to	measure	the	potential	risk	which	can	occur	to	the
portfolio	of	an	investor.	VaR	imputed	at	5%	confidence	means	that	the	loss	will	not	be	less	than	predicted
value	95%	of	the	time	or,	in	other	words,	loss	will	be	greater	in	5%	of	times	than	predicted	value.

There	are	three	common	ways	of	computing	value	at	risk:

Parametric	VaR
Historical	VaR
Monte	Carlo	VaR

In	this	section,	we	will	be	capturing	the	first	two,	and	the	third	one	will	be	captured	in	the	next	section.

Parametric	VaR
Parametric	VaR	is	also	known	as	the	variance-covariance	method	and	is	used	to	find	VaR	using	mean	and
standard	deviation	as	parameters.

qnorm	is	used	for	value	at	risk	calculation	using	parametric	methods.	It	uses	the	parameters	mean	and
standard	deviation.	The	general	syntax	is	as	follows:

qnorm(p,mean,sd)	

Here,	p	is	the	desired	percentile;	mean	is	the	given	mean	of	the	sample;	and	sd	is	the	standard	deviation
of	the	sample.

Let	us	assume	that	the	average	return	of	a	stock	is	2%	and	standard	deviation	is	4%,	then	the	value	at	risk
for	a	one	day	horizon	at	95%	confidence	level	using	the	parametric	approach	is	given	by	executing	the
following	approach:

>mean	=	2	

>sigma	=	4	

>Alpha	=	.05	

>Var_parametric	=	qnorm(alpha,	mean,	sigma)	

>Var_parametric	

It	generates	the	following	output	upon	execution:

[1]	-4.579	

Alternatively,	we	can	find	the	VaR	by	the	parametric	method	using	the	following	code:

>	Var_parametric	=	mean	+	sigma*qnorm(alpha,0,1)	

>	Var_parametric	

It	generates	the	output	as	shown	here:

[1]	-4.579	

Let	us	assume	we	have	VaR	for	a	one	day	horizon	and,	if	we	want	to	convert	it	at	a	different	horizon,	say	a
month,	then	it	can	be	converted	using	the	formula	given	here:

	

	

	

Here,	T	is	the	number	of	days	in	a	month.

Expected	shortfall	(ES)	is	also	known	as	conditional	value	of	risk	and	it	is	an	alternative	to	VaR.	ES	is	a
weighted	average	between	the	value	at	risk	and	the	losses	greater	than	value	at	risk.	By	means	of	ES,	we
try	to	quantify	VaR.

The	ES/CVAR	for	the	above	example	can	be	computed	using	the	following	example:

alpha_z=qnorm(alpha)	

ES_parametric	=	mean	+	sigma*(dnorm(alpha_z)/(1-alpha))	

ES_parametric	

It	generates	the	following	output:

[1]	2.434	

Historical	VaR
The	main	assumption	is	that	the	past	repeats	itself.	It	does	not	assume	any	particular	type	of	distribution.
Historical	VaR	is	estimated	by	simulating	or	constructing	the	cumulative	distribution	function	(CDF)	of
asset	returns	over	time.	Generally,	we	find	the	returns	on	the	regular	time	interval	basis	and	sort	them,	and
then	find	the	relevant	percentile.

Now	let	us	try	to	find	individual,	as	well	as	portfolio,	VaR	on	a	dataset.	The	dataset	is	generated	by
executing	the	following	code:

>library(quantmod)	

>	symbollist	=	c("FB",	"V","JNJ")	

>	getSymbols(symbollist,	from	="2016-01-01",	to	=	"2017-01-01")	

>	FB	=	FB[,	"FB.Adjusted",	drop=F]	

>	V	=	V[,	"V.Adjusted",	drop=F]	

>	JNJ	=	JNJ[,	"JNJ.Adjusted",	drop=F]	

>	FB_return	=	CalculateReturns(FB,		method="log")	

>	V_return	=	CalculateReturns(V,		method="log")	

>	JNJ_return	=	CalculateReturns(JNJ,		method="log")	

>	FB_return	=	FB_return[-1,]	

>	V_return	=	V_return[-1,]	

>	JNJ_return	=	JNJ_return[-1,]	

>	FB_V_JNJ_return<-cbind(FB_return,V_return,JNJ_return)	

>	head(FB_V_JNJ_return)	

It	prepares	the	dataset	required	for	historical	VaR	and	displays	a	sample	of	the	data	as	shown	here:

	

	

	

Figure	7.5:	Return	calculation	output

Now,	let	us	try	to	estimate	individual	historical	VaR	of	stocks	by	running	the	following	code:

>	HVAR<-VaR(FB_V_JNJ_return,	p=0.95,	method="historical")	

>	HVAR	

It	generates	the	following	output:

	

	

	

Figure	7.6:	Historical	individual	output

Similarly,	let	us	try	to	estimate	CVAR/ES,	which	can	be	computed	using	the	following	code:

>	HCVAR<-ES(FB_V_JNJ_return,	p=0.95,	method="historical")	

>	HCVAR	

Upon	executing,	it	generates	the	output	as	shown:

	

	

	

Figure	7.7:	Historical	CVAR	individual	output

We	can	find	a	lot	of	options	in	the	VaR()	function.	The	most	important	ones	are	given	here:

R:	Matrix,	xts	vector,	or	DataFrame
p:	Confidence	level
method:	It	uses	four	methods	-	modified,	Gaussian,	historical,	and	kernel
portfolio_method:	It	has	options	-	single,	component,	and	marginal	-	defining	whether	to	do
univariate,	component,	or	marginal	calculation

Now	let	us	try	to	find	the	component	VaR	of	the	portfolio.	If	the	weights	are	not	specified	then	it	takes
equal	weights.	It	can	be	obtained	by	running	the	following	code:

>	VaR(FB_V_JNJ_return,	p=0.95,portfolio_method="component")	

It	generates	the	following	output:

	

	

	

Figure	7.8:	Historical	VaR	output	by	component	method

Similarly,	we	can	find	the	marginal	VaR	by	executing	the	following	code:

>	VaR(FB_V_JNJ_return,	p=0.95,portfolio_method="marginal")	

It	generates	the	following	result:

	

	

	

Figure	7.9:	Historical	VaR	output	by	marginal	output

Monte	Carlo	simulation
Monte	Carlo	simulation	plays	a	very	important	role	in	risk	management.	Even	if	we	have	access	to	all	the
relevant	information	pertaining	to	risk	associated	with	a	firm,	it	is	still	not	possible	to	predict	the
associated	risk	and	quantify	it.	By	the	means	of	Monte	Carlo	simulation,	we	can	generate	all	the	possible
scenarios	of	risk	and	using	it,	we	can	evaluate	the	impact	of	risk	and	build	a	better	risk	mitigation
strategy.

Monte	Carlo	simulation	is	a	computational	mathematical	approach	which	gives	the	user	the	option	of
creating	a	range	of	possible	outcome	scenarios,	including	extreme	ones,	with	the	probability	associated
with	each	outcome.	The	possible	outcomes	are	also	drawn	on	the	expected	line	of	distribution,	which	may
be	closer	to	real	outcomes.	The	range	of	possible	outcomes	can	be	used	in	risk	analysis	for	building	the
models	and	drawing	the	inferences.	Analysis	is	repeated	again	and	again	using	a	different	set	of	random
values	from	the	probability	function	to	test	the	model	in	order	to	build	a	robust	model.	Probability
distributions	are	a	much	more	realistic	way	of	describing	uncertainty	in	variables	of	a	risk	analysis.
Monte	Carlo	simulation	uses	the	concept	of	Brownian	motion	dynamics.	Now	we	will	demonstrate	how
to	build	a	sample	with	a	given	distribution	using	Monte	Carlo	simulation,	and	will	try	to	estimate	VaR.

Let	us	assume	we	are	trying	to	generate	a	sample	of	returns	for	2000	months	for	a	stock	using	normal
distribution	of	mean.20,	sigma.25	and	deltat	=	.08333	for	month.	This	can	be	done	using	the	following
code:

>	Sample_Size<-2000	

>	set.seed(2345)	

>	Z<-rnorm(Sample_Size)	

>	mean<-.20	

>	sigma<-.25	

>	deltat<-.08333	

>	returns<-mean*deltat+sigma*Z*sqrt(deltat)	

>	hist(returns,	breaks	=	50)	

It	generates	the	following	displayed	histogram:

	

	

	

Figure	7.10:	Histogram	of	returns	generated	by	MCM

Now	let	us	try	to	find	the	mean	and	standard	deviation	of	newly	constructed	sample,	which	is	given	by
executing	the	following	code:

>	Mean_new<-mean(returns)*12	

>	Mean_new	

>	std_new<-sd(returns)*(12)^(.5)	

>	std_new	

It	generates	the	mean	as	0.1821	and	standard	deviation	as	0.2439,	which	is	close	to	the	mean	and
standard	deviation	taken	for	constructing	the	sample.	Thus,	clearly,	the	new	sample	is	a	normal
distribution.

The	value	at	risk	of	the	above	series	can	be	computed	using	the	following	code:

VaR(returns,	p	=	0.95,	method="historical")	

It	generates	the	following	output:

VaR	-0.09665	

Hedging
Hedging	is	basically	taking	a	position	in	the	market	to	reduce	the	risk.	It	is	a	strategy	built	to	reduce	the
risk	in	investment	using	call/put	options/futures	short	selling.	The	idea	of	hedging	is	to	reduce	the
volatility	of	a	portfolio	by	reducing	the	potential	risk	to	loss.	Hedging	especially	protects	small
businesses	against	catastrophic	or	extreme	risk	by	protecting	the	cost	at	the	time	of	distress.	The	tax	laws
also	benefit	those	who	do	hedging.	For	firms	who	do	hedging,	it	works	like	insurance	and	they	have	more
independence	to	make	their	financial	decisions	without	thinking	about	the	risks.

Now,	let	us	consider	some	scenarios	of	hedging:

Currency	risk:	Also	known	as	exchange-rate	risk,	it	happens	due	to	fluctuations	in	the	prices	of	one
currency	with	respect	to	another.	Investors	or	companies	who	operate	across	the	world	are	exposed
to	currency	risk,	which	may	lead	to	profit	and	losses.	This	risk	can	be	reduced	by	hedging,	which
can	prevent	losses	happening	due	to	price	fluctuation.
Short	hedge:	Let	us	suppose	a	farmer	is	planning	to	plant	200,000	bushels	of	corn	and	will	be	ready
for	harvesting	in	the	next	2	months	and	for	delivery	in	the	consecutive	month.	The	farmer	knows	from
his	experience	that	the	cost	of	planting	and	harvesting	is	$5.30	per	bushel.	Delivery	month	corn
futures	are	traded	at	$5.70	per	bushel.	The	farmer	wants	to	lock	his	selling	price	so	he	enters	a	short
hedge	by	selling	some	delivery	month	futures.	Each	corn	future	contract	consists	of	5,000	bushels.
He	will	need	to	sell	40	future	contracts.	For	his	crop	protection	in	the	delivery	month,	he	realizes
that	the	price	of	corn	has	gone	down	and	is	priced	at	$5.20	per	bushel	and	the	price	of	a	delivery
month	future	contract	has	also	reduced	to	$5.40	per	bushel.

Selling	the	corn	in	the	cash	market	generates	him	a	sum	of	$5.20*200,000	=	$1,040,000.

Total	cost	incurred	is	$1,060,000	so	he	may	suffer	a	loss	of	$20,000.

But,	since	he	has	hedged	some	value	of	corn	futures	sold	in	planting	month	=	$5.70*200,000=$1,140,000.

Value	of	corn	futures	bought	in	delivery	month	=	$5.40*200,000=1,080,000.

So	gain	in	future	market	is	1,140,000-1,080,000=$60,000.

So	overall	profit	is	$60,000-$20,000=$40,000.

Similarly,	according	to	requirement,	the	investor	can	do	long	hedging.

The	most	common	instruments	used	for	hedging	are	forward	contracts,	future	contracts,	and	option
contracts.

Basel	regulation
The	main	goal	for	the	Basel	Committee	on	Banking	Supervision	is	to	improve	understanding	of	key
supervisory	issues	to	set	a	healthy	banking	supervision	worldwide.	Its	main	objective	is	to	develop
regulatory	frameworks	in	order	to	improve	banking	systems.	Currently,	Basel	III	has	been	developed	to
meet	the	deficiencies	in	financial	regulations	exposed	during	the	financial	crisis	of	2007-2008.	Basel	III
is	a	global	voluntary	regulatory	framework	on	bank	capital	adequacy,	stress	testing,	and	market	liquidity
risk.	It	is	assumed	to	strengthen	bank	capital	requirements	by	decreasing	bank	leverage	and	increasing
bank	liquidity.	The	objective	of	implementing	Basel	III	is	to	make	the	banking	sector	more	robust	so	that	it
can	absorb	shocks	arising	from	financial	and	economic	stress,	improve	risk	management	and	governance,
and	strengthen	banks'	transparency	and	disclosures.

The	R	community	has	developed	a	library,	SACCR,	keeping	in	mind	the	regulations	of	Basel	III.	This
library	has	many	methods	which	are	based	upon	the	standardized	norms	of	Basel	III.	It	has	implemented
all	the	examples	appearing	in	the	regulatory	framework.	For	example,	it	computes	exposure	at	default
according	to	Basel	norms.

It	uses	the	function	CalcEAD(RC,PFE)	to	calculate	the	exposure	of	default.

Here,	RC	is	replacement	cost	and	PFE	is	projected	future	exposure.

So,	if	the	RC	component	is	50	and	PFE	is	400	then	executing	the	following	code	finds	exposure	at	default:

>	CalcEAD(50,400)	

It	generates	the	output	630.

Similarly,	there	are	other	functions	in	this	library	on	the	basis	of	implementation	of	Basel	III.

Credit	risk
Credit	risk	is	the	risk	associated	with	an	investment	where	the	borrower	is	not	able	to	repay	the	amount	to
the	lender.	This	can	happen	on	account	of	poor	financial	conditions	of	the	borrower,	and	it	represents	a
risk	for	the	lender.	The	risk	is	for	the	lender	to	incur	loss	due	to	non-payment	and	hence	disruption	of	cash
flows	and	increased	collection	costs.	The	loss	may	be	complete	or	partial.	There	are	multiple	scenarios
in	which	a	lender	can	suffer	loss.	Some	of	the	scenarios	are	given	here:

A	customer	not	making	a	payment	on	a	mortgage	loan,	credit	card,	line	of	credit,	or	other	type	of	loan
Business/consumer	not	paying	due	trade	invoice
A	business	not	paying	an	employee's	due	earned	wages
A	business/government	bond	issuer	not	making	payment	on	a	due	coupon	or	principal
An	insurance	company	not	obliging	its	policy	obligation	due
A	bank	not	returning	funds	of	depositors

It	is	a	practice	of	mitigating	losses	by	understanding	the	adequacy	of	a	bank's	capital	and	loan	loss
reserves	at	any	given	time.	In	order	to	reduce	the	credit	risk,	the	lender	needs	to	develop	a	mechanism	to
perform	a	credit	check	on	the	prospective	borrower.	Generally,	banks	quantify	the	credit	risk	using	two
metrics	-	expected	loss	and	economic	capital.	Expected	loss	is	the	value	of	a	possible	loss	times	the
probability	of	that	loss	occurring.	Economic	capital	is	the	amount	of	capital	necessary	to	cover
unexpected	losses.	There	are	three	risk	parameters	that	are	essential	in	the	process	of	calculating	the	EL
and	EC	measurements:	the	probability	of	default	(PD),	loss	given	default	(LGD),	and	exposure	at
default	(EAD).	Calculation	of	PD	is	more	important,	so	we	will	be	discussing	it.

For	building	the	PD	model,	let	us	use	the	subset	of	German	Credit	Data	available	in	R.	Data	used	for	the
analysis	is	given	by	executing	the	following	code:

>	data(GermanCredit)	

>	LRData<-GermanCredit[,1:10]	

Before	starting	the	modeling,	we	need	to	understand	the	data,	which	can	be	done	by	executing	the
following	code:

>	str(LRData)	

It	gives	us	the	column	types	and	kind	of	values	it	has,	as	shown	here:

	

	

	

Figure	7.11:	Column	description	of	the	dataset

In	this	example,	our	target	variable	is	Class.	Class	=	Good	means	non-defaulter	and	Class	=	bad
means	defaulter.	Now,	to	understand	the	distribution	of	all	the	numeric	variables,	we	can	compute	all	the
basic	statistics	related	to	the	numeric	attributes.	This	can	be	done	by	executing	the	following	code:

>	summary(LRData)	

A	sample	of	the	output	generated	by	the	preceding	code	is	displayed	here:

	

	

	

Figure	7.12	Basic	statistics	of	numeric	variables

Now	let	us	prepare	our	data	for	modeling	by	executing	the	following	code:

>	set.seed(100)	

>	library(caTools)	

>	res	=	sample.split(LRData$Class,	0.6)	

>	Train_data	=	subset(LRData,	res	==	TRUE)	

>	Test_data=subset(LRData,res==FALSE)	

The	preceding	code	generates	Train	and	Test	data	for	modeling.

The	proportion	of	selecting	the	Train	and	Test	data	is	quite	subjective.	Now	we	can	do	basic	statistics
for	imputation	of	missing/outlier	values	and	exploratory	analysis	(such	as	information	value	analysis	and
correlation	matrix)	of	the	independent	variables	with	respect	to	dependent	variables	for	understanding	the
relationship.

Now	let	us	try	to	fit	the	model	on	the	Train	data,	which	can	be	done	by	executing	the	following	code:

>	lgfit	=	glm(Class	~.	,	data=Train_data,	family="binomial")	

>	summary(lgfit)	

It	generates	the	summary	of	the	model	as	displayed	here:

	

	

	

Figure	7.13:	Output	summary	of	logistic	regression

As	we	can	see	in	the	summary,	by	means	of	Pvalues,	there	are	significant	as	well	as	insignificant
attributes	in	the	model.	Keeping	in	mind	the	significance	of	attributes	and	multicollinearity,	we	can	iterate
the	model	to	find	the	best	model.	In	our	case,	let	us	rerun	the	model	with	only	significant	attributes.

This	can	be	done	by	executing	the	following	code:

>	lgfit	=	glm(Class	~Duration+InstallmentRatePercentage+Age	,	data=Train_data,	

family="binomial")	

>	summary(lgfit)	

It	generates	the	summary	output	as	follows:

	

	

	

Figure	7.14:	Output	summary	of	logistic	regression	having	only	significant	attributes

The	output	summary	shows	that	all	the	attributes	considered	in	the	model	are	significant.

There	are	a	lot	of	statistics	in	logistic	regression	for	checks	of	model	accuracy	and	in	this	case,	we	will
be	showing	the	ROC	curve	and	the	confusion	matrix	for	accuracy	checks.

We	can	compute	the	threshold	for	classification	by	KS	statistics	but	here	let	us	assume	the	threshold	value
is	0.5	and	try	to	score	our	Train	sample	by	executing	the	following	code:

>	Train_data$predicted.risk	=	predict(lgfit,	newdata=Train_data,	type="response")	

>	table(Train_data$Class,	as.numeric(Train_data$predicted.risk	>=	0.5))	

It	generates	the	confusion	matrix	as	displayed	here:

	

	

	

Figure	7.15:	Confusion	matrix	for	logistic	regression

Now,	let	us	compute	the	auc	by	executing	the	following	code:

>	library(ROCR)	

>	pred	=	prediction(Train_data$predicted.risk,	Train_data$Class)	

>	as.numeric(performance(pred,	"auc")@y.values)	

It	gives	the	value	of	auc	as	shown	here:

0.67925265	

Now,	let	us	plot	the	ROC	curve	by	executing	the	following	code:

>	predict_Train	=	predict(lgfit,	type="response")	

>	ROCpred	=	prediction(predict_Train,	Train_data$Class)	

>	ROCperf	=	performance(ROCpred,	"tpr",	"fpr")	

>	plot(ROCperf)	

It	plots	the	ROC	curve	as	shown	here:

	

	

	

Figure	7.16:	ROC	curve

We	can	use	the	same	model	fit	created	on	Train_data	and	score	Test_data	and	check	whether	the
accuracy	measures	are	in	the	same	range	or	not	to	validate	the	model.

Fraud	detection
Identifying	fraudulent	transactions	is	one	of	the	most	important	components	of	risk	management.	R	has
many	functions	and	packages	that	can	be	used	to	find	fraudulent	transactions,	including	binary
classification	techniques	such	as	logistic	regression,	decision	tree,	random	forest,	and	so	on.	We	will	be
again	using	a	subset	of	the	German	Credit	data	available	in	R	library.	In	this	section,	we	are	going	to	use
random	forest	for	fraud	detection.	Just	like	logistic	regression,	we	can	do	basic	exploratory	analysis	to
understand	the	attributes.	Here	we	are	not	going	to	do	the	basic	exploratory	analysis	but	will	be	using	the
labeled	data	to	train	the	model	using	random	forest,	and	then	will	try	to	do	the	prediction	of	fraud	on
validation	data.

So	the	dataset	used	for	the	analysis	will	be	given	by	executing	the	following	code:	>data(GermanCredit)
>FraudData<-GermanCredit[,1:10]	>	head(FraudData)

It	generates	a	few	lines	of	the	sample	data:

	

Figure	7.17:	Sample	data	used	for	fraud	analysis

The	class	will	be	our	target	variable	in	the	dataset	and	a	class	with	level	bad	means	fraud	has	been
committed	by	the	customer.	Now	let	us	divide	the	preceding	data	into	train	and	test	samples	by
executing	the	following	code:	>	len<-dim(FraudData)[1]	>	train<-	sample(1:len	,	0.8*len)	>	TrainData<-
FraudData[train,]	>	TestData<-FraudData[-train,]

It	generates	the	Train	and	Test	data.

Now,	let	us	try	to	build	the	classification	model	on	the	train	sample	with	the	random	forest	technique.	This
can	be	done	by	executing	the	following	code:	>	fraud_model	<-
randomForest(Class~.,data=TrainData,ntree=50,proximity=TRUE)	>	print(fraud_model)

It	generates	the	following	output:

	

Figure	7.18:	Output	summary	of	logistic	random	forest

The	error	for	the	trees	can	also	be	plotted	by	executing	the	following	code:	>	plot(fraud_model)

Here	is	the	output	generated:

	

Figure	7.19:	Error	plot	for	trees	of	random	forest

The	comparative	importance	of	the	attributes	can	be	given	by	executing	the	following	code:	>
importance(fraud_model)

It	generates	the	following	output:

	

Figure	7.20:	Variable	comparison	summary	by	random	forest

Now,	let	us	do	classification	on	the	test	data	by	executing	the	following	code:	>	TestPred<-
predict(fraud_model,newdata=TestData)	>	table(TestPred,	TestData$Class)

It	generates	the	following	classification	table:

	

Figure	7.21:	Classification	summary	of	random	forest

Liability	management
Liability	management	is	the	process	of	keeping	appropriate	liquidity	reserves	and	allocating	assets	by
financial	institutions	to	balance	outstanding	liabilities	such	as	deposits,	CDs,	and	so	on	to	obtain	best
performance	by	simultaneously	meeting	liabilities	and	growing	net	assets.	Banks	have	several	risks	-
asset	management	risk,	interest	rate	risk,	and	currency	exchange	risks	-	and	by	using	liability	management,
banks	and	financial	institutions	try	to	minimize	the	risk.

In	this	chapter,	we	have	discussed	several	topics,	such	as	market	risk,	portfolio	risk,	credit	risk,	fraud
detection,	diversification	of	portfolios,	optimization	of	portfolios,	and	rebalancing	of	the	portfolio,	which
can	help	financial	in	situation	with	liability	management.

Questions
1.	 What	is	market	risk	and	how	can	R	help	in	measuring	market	risk?	Please	give	an	example.
2.	 What	are	the	ways	of	measuring	risk	associated	with	the	portfolio?
3.	 What	are	the	most	common	ways	of	measuring	VaR?	Please	construct	a	portfolio	and	find	VaR	using

all	the	methods.
4.	 How	do	you	compute	ES/CVAR	in	R?
5.	 Construct	a	sample	using	normal	and	lognormal	distribution	using	the	Monte	Carlo	method	and	find

the	historical	VaR	for	each	of	them.
6.	 How	do	you	find	component	and	marginal	VaR	for	a	portfolio	in	R?
7.	 What	is	credit	scoring	and	how	do	you	execute	it	in	R?	Construct	an	example	and	build	a	scoring

example	along	with	validation.
8.	 What	are	the	ways	to	identify	fraud?	How	do	you	execute	them	in	R?

Summary
In	this	chapter,	we	have	covered	the	types	of	risks	associated	with	financial	institutions,	such	as	market
risk,	portfolio	risk,	VaR,	Monte	Carlo	simulation,	hedging,	Basel	regulations,	credit	risk,	and	fraud
detection.	Also,	we	have	discussed	how	the	strengths	of	R	can	be	leveraged	for	measuring	different	types
of	risk.	In	this	chapter,	we	have	demonstrated	examples	of	measuring	risks	such	as	market,	portfolio,	and
credit	using	R,	and	also	how	to	use	techniques	such	as	random	forest	classification	for	fraud	detection.

In	the	next	chapter,	we	will	be	covering	various	optimization	techniques	used	in	trading	algorithms	and
parameter	estimation.	Optimization	techniques	such	as	dynamic	rebalancing,	walk	forward	testing,	grid
testing,	and	genetic	algorithm	will	be	covered.

Chapter	8.	Optimization
Optimization	is	a	way	of	selecting	the	best	solution	out	of	all	feasible	solutions.	So,	the	first	part	of
optimization	is	to	formulate	the	problem	according	to	given	constraints,	and	to	apply	an	advanced
analytical	method	to	get	the	best	solution	and	help	in	making	better	decisions.

Optimization	models	play	a	pivotal	role	in	quant	and	computational	finance	by	solving	complex	problems
more	efficiently	and	accurately.	Problems	associated	with	asset	allocation,	risk	management,	option
pricing,	volatility	estimation,	portfolio	optimization,	and	construction	of	index	funds	can	be	solved	using
optimization	techniques	such	as	nonlinear	optimization	models,	quadratic	programming	formulations,	and
integer	programming	models.	There	is	a	variety	of	commercial	and	open	source	software	available	in	the
analytical	space	to	solve	these	problems,	and	R	is	one	of	the	preferred	choices	as	it	is	open	source	and
efficient.

In	this	chapter,	we	will	be	discussing	some	of	the	optimization	techniques	and	how	to	solve	them	using	R.

The	chapter	covers	the	following	topics:

Dynamic	rebalancing
Walk	forward	testing
Grid	testing
Genetic	algorithm

Dynamic	rebalancing
Dynamic	rebalancing	is	a	process	of	keeping	one's	portfolio	closer	to	your	allocated	target	using	the
natural	cash	inflows	and	outflows	to	your	portfolio.	Rebalancing	involves	periodically	buying	or	selling
assets	in	a	portfolio	to	maintain	an	original	desired	level	of	asset	allocation,	realigning	the	weightings	of
a	portfolio	of	assets.

Let	us	consider	an	example.	In	a	portfolio,	the	target	asset	allocation	was	40%	stocks	and	60%	bonds.	If
the	bonds	performed	well	during	the	period,	the	weights	of	bonds	in	the	portfolio	could	result	to	70%.
Then,	the	investor	will	decide	to	sell	some	bonds	and	buy	some	stocks	to	get	the	portfolio	back	to	the
original	target	allocation	of	40%	stock	and	60%	bonds.

Now,	let	us	see	how	to	do	rebalancing	of	the	portfolio	in	R.

Periodic	rebalancing
Let	us	consider	data	sourced	from	R:

>library(PerformanceAnalytics)	

>data(edhec)		

>	data<-edhec["1999",	3:5]	

>	colnames(data)	=	c("DS","EM","EMN")	

>	data	

It	gives	the	following	dataset:

	

Figure	8.1:	Dataset	used	for	rebalancing	analysis

Now	let	us	assume	that	on	1998-12-31,	the	weights	of	the	portfolio	consisting	of	the	above	instruments
are	given	as	the	following:	>	wts	<-	xts(matrix(c(.3,.3,.4),nrow=1,ncol=3),	as.Date("1998-12-31"))	>
colnames(wts)<-colnames(data)	>	wts

It	gives	the	weights	as	follows	at	the	end	of	the	year	1998:	

	

Figure	8.2:	Initial	weights	assigned

Now,	if	we	want	to	balance	the	weights	on	a	monthly	basis	then	it	can	be	done	by	executing	the	following
code:	>	Return.portfolio(data,weights	=wts,	rebalance_on="months",verbose=TRUE)

Here,	data	is	the	input	data;	weights	is	the	defined	weights	for	the	components	of	the	portfolio;
rebalance_on	=	True	means	weighted	rebalanced	monthly	portfolio	returns;	and	verbose	=	True
returns	additional	information.

When	we	execute	the	preceding	code,	it	generates	an	output	list	which	includes	portfolio	returns	after
adjustment	for	each	interval,	monthly	contribution	by	each	asset,	before	and	after	weights	of	assets	after
each	interval,	and	before	and	after	portfolio	values	for	each	interval.	Thus	it	gives	a	complete	picture	of
how	rebalancing	happens	during	a	given	time	span.

The	monthly	rebalanced	portfolio	returns	are	given	as	follows:	

	

Figure	8.3:	Portfolio	returns	at	different	time	periods	Monthly	contribution	by	each	asset	is	given	as

follows:	

	

Figure	8.4:	Monthly	contribution	by	each	asset

Beginning-of-period	weights	are	given	as	follows:

	

Figure	8.5:	Summary	of	weights	at	the	beginning	of	each	period	End-of-period	weights	are	given	as
follows:

	

Figure	8.6:	Summary	of	weights	at	the	end	of	each	period	Beginning-of-period	portfolio	value	is	given	as

follows:	

	

Figure	8.7:	Portfolio	value	at	the	beginning	of	each	period	End-of-period	portfolio	value	is	given	as
follows:

	

Figure	8.8:	Portfolio	value	at	the	end	of	each	period

Walk	forward	testing
Walk	forward	testing	is	used	in	quant	finance	for	identifying	the	best	parameters	to	be	used	in	a	trading
strategy.	The	trading	strategy	is	optimized	on	a	subset	of	sample	data	for	a	specific	time	window.	The	rest
of	the	unused	data	is	kept	separate	for	testing	purposes.	The	testing	is	done	on	a	small	window	of	unused
data	with	the	recorded	results.	Now,	the	training	window	is	shifted	forward	to	include	the	testing	window
and	the	process	is	repeated	again	and	again	till	the	testing	window	is	not	available.

Walk	forward	optimization	is	a	method	used	in	finance	for	determining	the	best	parameters	to	use	in	a
trading	strategy.	The	trading	strategy	is	optimized	with	in-sample	data	for	a	time	window	in	a	data	series.
The	remainder	of	the	data	is	reserved	for	out-of-sample	testing.	A	small	portion	of	the	reserved	data
following	the	in-sample	data	is	tested	with	the	results	recorded.	The	in-sample	time	window	is	shifted
forward	by	the	period	covered	by	the	out-of-sample	test,	and	the	process	repeated.	At	the	end,	all	of	the
recorded	results	are	used	to	assess	the	trading	strategy.

Grid	testing
Let	us	consider	a	typical	classification	problem.	Assume	you	have	a	dataset	and	you	divide	it	into	training
(T)	and	validating	(V)	datasets.	Here	you	are	trying	to	solve	an	optimization	problem,	let's	say	P,	in	which
one	is	trying	to	reduce	the	training	error	in	addition	to	regularization	terms,	where	the	optimization

problem	is	a	function	of	model	parameter	m,	training	sample	T,	and	some	hyperparameters	 	and	 .

Solving	for	given	 	and	 	gives	you	the	value	of	parameter	m.	Now	one	can	apply	the	estimated
parameters	on	the	validation	sample	to	get	the	validation	error	function,	and	optimize	it	to	get	the	set	of	

	and	 	to	minimize	the	error	function.	But	this	optimization	problem	will	be	very	expensive	as,	for

each	set	of	 	and	 ,	you	need	to	optimize	the	objective	function,	which	might	not	be	a	convex,
concave,	or	smooth	function.

So	we	subset	the	set	of	 	and	 	and,	for	each	pair	of	selected	 	and	 ,	we	solve	the
optimization	problem.	This	looks	like	a	grid	in	space	so	we	call	it	a	grid	search.	So,	a	grid	search	is
mostly	used	to	tune	the	model.

Let	us	consider	a	classification	example	using	the	random	forest	technique.	Now,	construct	first	a	base
line	model	by	executing	the	following	code:

>library(randomForest)	

>library(mlbench)	

>library(caret)	

>data(Shuttle)	

>Analysis_Data<-head(Shuttle,10000)	

>X	<-	Analysis_Data[,1:9]	

>Y<-	Analysis_Data[,10]	

>control	<-	trainControl(method="repeatedcv",	number=5,	repeats=3)	

>seed	<-	4	

>metric	<-	"Accuracy"	

>set.seed(seed)	

>Count_var	<-	sqrt(ncol(X))	

>tunegrid	<-	expand.grid(.mtry=Count_var)	

>rf_baseline	<-	train(Class~.,	data=Analysis_Data,	method="rf",	metric=metric,	

tuneGrid=tunegrid,	trControl=control)	

>print(rf_baseline)	

It	generates	the	summary	output	of	the	random	forest	model:

	

Figure	8.9:	Summary	output	for	random	forest

A	grid	search	means	you	have	given	a	pool	of	models	which	are	different	from	each	other	in	their
parameter	values,	which	lie	on	grids.	Train	each	of	the	models	and	evaluate	them	using	cross-validation
to	select	the	best	model.

Now,	let	us	try	to	apply	the	grid	search	method	and	check	the	accuracy.	This	can	be	done	by	executing	the
following	code:

>	control	<-	trainControl(method="repeatedcv",	number=5,	repeats=3,	search="grid")	

>	set.seed(seed)	

>	tunegrid	<-	expand.grid(.mtry=c(1:8))	

>	rf_gridsearch_method	<-	train(Class~.,	data=Analysis_Data,	method="rf",	

metric=metric,	tuneGrid=tunegrid,	trControl=control)	

>	print(rf_gridsearch_method)	

It	gives	the	following	output	with	better	estimates:

	

Figure	8.10:	Grid	search	output	for	random	forest

Now,	let	us	plot	the	accuracy	for	different	random	forest	models	for	different	sets	of	attributes,	which	can
be	done	by	executing	the	following	code:

>	plot(rf_gridsearch_method)	

This	gives	tuned	random	forest	parameters	in	R	using	grid	search:

	

Figure	8.11:	Accuracy	plot	for	different	random	forest	models

It	compares	the	pool	of	models	in	terms	of	accuracy.

Genetic	algorithm
Genetic	algorithm	(GA)	is	a	search-based	optimization	technique	whose	fundamentals	come	from	the
theory	of	genetics	and	natural	selection.	It	is	used	to	solve	optimization	problems	in	research	and	machine
learning	areas	which	are	very	difficult	and	time-consuming	solutions	by	alternative	methods.

Optimization	is	the	process	of	finding	a	solution	which	is	better	when	compared	to	all	other	alternative
solutions.	It	takes	the	space	of	all	the	possible	solutions	as	search	space,	and	then	finds	a	solution	which
is	most	suited	to	the	problem.

In	GA,	possible	candidate	solutions	constitute	the	population	and	they	recombine	and	mutate	to	produce
new	children,	and	this	process	is	repeated	over	various	generations.	Each	possible	candidate	solution	is
given	a	fitness	value	based	upon	the	objective	function.	The	fitter	probable	candidates	are	given
preference	for	recombination	and	mutation	to	yield	fitter	candidate	solutions.

Some	of	the	most	important	terminology	associated	with	GA	is	as	follows:

Population:	It	is	a	subset	of	all	the	possible	candidate	solutions	of	the	existing	problem
Chromosomes:	A	chromosome	is	one	solution	to	the	given	problem
Gene:	A	gene	is	one	element	position	of	a	chromosome

For	example,	let	us	assume	that	the	last	year	of	the	portfolio	with	the	following	stocks,	contributes	with
the	returns	mentioned	if	invested	with	the	same	proportion	as	mentioned	here.	Then	we	need	to	please
maximize	the	performance	of	the	portfolio	by	limiting	the	total	weight	to	one:

Stocks Returns Weights

Stock1 10 .1

Stock2 11 .2

Stock3 15 .1

Stock4 20 .2

Stock5 12 .2

Stock6 13 .3

Let	us	try	to	solve	it	using	GA	in	R.

First	let	us	define	the	input	data	requirement,	which	can	be	done	by	executing	the	following	code:
>install.packages("genalg")	>library(genalg)	>library(ggplot2)	>InputDataset	<-	data.frame(Stocks	=
c("Stock1",	"Stock2",	"Stock3",	"Stock4",	"Stock5",	"Stock6"),	returns	=	c(10,	11,	15,	20,	12,	13),	weight
=	c(.1,	.2,	.1,	.2,	.2,	.3))	>WTlimit	<-	1	>InputDataset

This	gives	the	following	output:

	

	

	

Figure	8.12:	Input	dataset	for	GA

Now	let	us	set	the	evaluation	function	as	shown	in	the	following	code:	>evaluationFunc	<-	function(x)	{
current_solution_returns	<-	x	%*%	InputDataset$returns	current_solution_weight	<-	x	%*%
InputDataset$weight	if	(current_solution_weight	>	WTlimit)	return(0)	else	return(-
current_solution_returns)	}

Then,	let	us	design	the	model	and	execute	it.	This	can	be	done	by	executing	the	following	code:	>
GAmodel	<-	rbga.bin(size	=	6,	popSize	=	100,	iters	=	50,	mutationChance	=	0.01,	+	elitism	=	T,	evalFunc
=	evaluationFunc)	>	cat(summary(GAmodel))

Here:

size	is	the	number	of	genes	in	the	chromosome
popsize	is	the	population	size
iters	is	the	number	of	iterations
mutationChance	is	the	chance	that	the	chromosome	mutates
elitism	is	the	number	of	chromosomes	that	are	kept	for	the	next	generation;	by	default,	it	is	20%
evalFunc	is	the	user-supplied	evaluation	function	for	given	chromosomes

This,	upon	execution,	gives	the	following	output:

	

	

	

Figure	8.13:	Summary	output	for	GA	model

It	says	to	retain	all	the	stocks	apart	from	Stock2	to	obtain	the	optimal	portfolio.

Let	us	consider	another	example	of	genetic	algorithm.	Here,	we	will	try	to	estimate	the	coefficients	by
genetic	algorithm	and	the	traditional	OLS	method.

First,	let	us	consider	a	dataset	using	the	following	code:	>library(GA)	>	data(economics)	>
Data_Analysis<-data.frame(economics[,2:4])	>head(Data_Analysis)

This	gives	the	following	dataset:

	

	

	

Figure	8.14:	Input	sample	for	parameter	estimates	by	GA	Now,	let	us	try	to	estimate	pce	in	terms	of	pop
and	psavert	by	GA.	Let	us	now	create	a	function	to	evaluate	linear	regression,	which	is	given	by	the
following	code:	>OLS_GA	<-	function(Data_Analysis,	a0,	a1,	a2){	attach(Data_Analysis,
warn.conflicts=F)	Y_hat	<-	a0	+	a1*pop	+	a2*psavert	SSE	=	t(pce-Y_hat)	%*%	(pce-Y_hat)
detach(Data_Analysis)	return(SSE)	}

Then,	let	us	try	to	estimate	the	coefficients	by	GA,	which	can	be	done	by	executing	the	following	code:
>ga.OLS_GA	<-	ga(type='real-valued',	min=c(-100,-100,-100),	max=c(100,	100,	100),	popSize=500,
maxiter=500,	names=c('intercept',	'pop',	'psavert'),	keepBest=T,	fitness	=	function(a)	-
OLS(Data_Analysis,	a[1],a[2],	a[3]))	>	summary(ga.OLS_GA)

This	gives	the	following	output:

	

	

	

Figure	8.15:	Summary	output	parameter	estimates	by	GA

Questions
1.	 What	is	the	significance	of	optimization	in	quant	finance?
2.	 What	is	the	dynamic	rebalancing	optimization	method?	Give	an	example	of	how	to	execute	it	in	R.
3.	 How	can	a	grid	search	be	used	to	fine-tune	a	classification	model?	Please	provide	an	example	in	R.
4.	 How	can	genetic	algorithm	be	used	in	R	for	optimizing	a	trading	algorithm?
5.	 How	can	genetic	algorithm	be	used	in	R	for	estimating	a	model	coefficient	in	R?	Provide	an

example.

Summary
In	this	chapter,	we	have	discussed	various	optimization	techniques	used	in	trading	algorithms	and
parameter	estimation.	The	covered	optimization	techniques	were	dynamic	rebalancing,	walk	forward
testing,	grid	testing,	and	genetic	algorithm.

In	the	next	chapter,	the	topics	covered	are	using	foptions,	termstrc,	CreditMetrics,	credule,	GUIDE,
and	fExoticOptions	to	price	options,	bond,	credit	spreads,	credit	default	swaps,	interest	rate
derivatives,	and	different	types	of	exotic	options.

Chapter	9.	Derivative	Pricing
Algorithmic	trading	and	financial	engineering	are	the	two	most	computationally	intensive	parts	of	finance.
People	in	these	areas	are	not	only	experts	in	finance,	mathematics,	and	statistics,	but	they	are	also	well
versed	in	computationally	intensive	software.	In	the	earlier	chapters,	we	have	learnt	about	algorithmic
trading.	In	this	chapter,	we	will	study	the	different	types	of	derivative	pricing	techniques	in	R,	as	pricing
of	derivatives	is	the	most	crucial	part	of	financial	engineering.

Derivative	price	depends	upon	the	value	of	its	underlying.	We	will	start	with	a	few	basic	option	pricing
models	and	move	to	other	asset	classes:

Option	pricing
Implied	volatility
Bond	pricing
Credit	spread
Credit	default	swaps
Interest	rate	derivatives
Exotic	options

Option	pricing
The	binomial	model	works	with	the	continuous	process,	while	the	Cox-Ross-Rubinstein	model	works
with	the	discrete	process.	Option	price	depends	upon	stock	price,	strike	price,	interest	rates,	volatility,
and	time	to	expiry.	We	will	use	the	package	fOption	for	the	Black-Scholes	model.	The	following
commands	install	and	load	this	into	the	workspace:

>	install.packages("fOptions")	

>	library(fOptions)	

Black-Scholes	model
Let	us	consider	an	example	of	call	and	put	options	using	hypothetical	data	in	June	2015	with	a	maturity
of	September	2015,	that	is,	3	months	to	time	to	maturity.	Assume	that	the	current	price	of	the	underlying
stock	is	USD	900,	the	strike	price	is	USD	950,	the	volatility	is	22%,	and	the	risk-free	rate	is	2%.	We	also
have	to	set	the	cost	of	carry	(b);	in	the	original	Black-Scholes	model	(with	underlying	paying	no
dividends),	it	equals	the	risk-free	rate.

The	following	command	GBSOption()	calculates	the	call	option	price	using	all	other	parameters.	The
first	parameter	is	type	of	option,	that	is,	call	or	put,	the	second	is	current	stock	price,	the	third	is	strike
price,	the	fourth,	fifth,	sixth,	and	seventh	are	time	to	expiry,	risk-free	rate	of	interest,	volatility,	and	cost	of
carry:

>model	<-	GBSOption(TypeFlag	=	"c",	S	=	900,	X	=950,	Time			=	1/4,	r	=	0.02,sigma	=	

0.22,	b	=	0.02)	

The	output	of	the	model	can	be	seen	by	typing	model	on	the	R	console	and	it	consists	of	the	title,	which	is
Black-Scholes	option,	methodology,	function	syntax,	parameters	used	and,	toward	the	end,	it	has	option
price:

>	model	

Title:	

Black	Scholes	Option	Valuation		

Call:	

GBSOption(TypeFlag	=	"c",	S	=	900,	X	=	950,	Time	=	1/4,	r	=	0.02,		b	=	0.02,	sigma	

=	0.22)	

Parameters:	

Value:	

	TypeFlag	c						

	S								900				

	X								950				

	Time					0.25			

	r								0.02			

b								0.02			

sigma																0.22			

Option	Price:	

																	21.79275		

Description:	

	Sat	Dec	31	11:53:06	2016	

If	you	would	like	to	find	the	option	price,	you	can	do	so	using	the	following	line	of	code:

>	model@price	

[1]	21.79275	

You	can	change	the	first	parameter	to	p	if	you	would	like	to	calculate	the	put	option	price.

The	following	command	will	calculate	the	put	option	price	and	extract	only	price.	It	does	not	show	other
items	in	output	as	we	used	@price:

>	GBSOption(TypeFlag	=	"p",	S	=	900,	X	=950,	Time	=	1/4,	r	=	0.02,	sigma	=	0.22,	b	

=	0.02)@price	

[1]	67.05461	

Cox-Ross-Rubinstein	model
The	Cox-Ross-Rubinstein	model	assumes	that	the	underlying	asset	price	follows	a	discrete	binomial
process.	The	price	either	goes	up	or	down	in	each	period.	The	important	feature	of	the	CRR	model	is	that
the	magnitude	of	the	up	movement	is	inversely	proportional	to	the	down	movement,	that	is,	u=1/d.	The
price	after	two	periods	will	be	the	same	if	it	first	goes	up	and	then	goes	down	or	vice	versa,	as	shown	in
Figure	9.1.

The	following	two	commands	compute	the	call	and	put	option	prices	using	the	binomial	model	and
keeps	all	other	parameters	the	same	as	in	the	continuous	case	except	the	last	parameter.	The	last
parameter	is	the	number	of	steps	time	is	to	be	divided	to	model	the	option.	I	used	n=3,	which	means	only
three	steps	are	used	to	price	option:

>	CRRBinomialTreeOption(TypeFlag	=	"ce",	S	=	900,	X	=	950,	Time	=	1/4,	r	=	0.02,	b	

=	0.02,	sigma	=	0.22,	n	=	3)@price	

[1]	20.33618	

>	CRRBinomialTreeOption(TypeFlag	=	"pe",	S	=	900,	X	=	950,	Time	=	1/4,	r	=	0.02,	b	

=	0.02,	sigma	=	0.22,	n	=	3)@price	

[1]	65.59803	

However,	all	the	values	supplied	to	the	Black-Scholes	and	binominal	models	are	the	same	but	the	output
is	not	exactly	the	same,	it	is	a	little	bit	different	for	both	call	and	put	options.	If	we	are	interested	in	the
path	or	trajectory	of	the	price	movement	then	we	should	use	the	following	command,	which	calculates	the
binomial	tree	of	the	call	option	price,	and	save	the	result	in	variable	named	model.

The	second	command	uses	the	variable	model	to	plot	the	binomial	tree,	which	is	done	using
BonimialTreePlot();	it	also	helps	in	placing	the	option	value	in	tree.	Third	and	fourth	are	x-axis	and	y-
axis	labels,	and	the	fifth	is	x-axis	limit.

The	third	command	is	used	to	place	the	title	of	the	figure:

>model<-	BinomialTreeOption(TypeFlag	=	"ce",	S	=	900,	X	=	950,Time	=	1/4,	r	=	0.02,	

b	=	0.02,	sigma	=	0.22,	n	=	3)	

>	BinomialTreePlot(model,	dy	=	1,	xlab	=	"Time	steps",ylab	=	"Options	Value",	xlim	

=	c(0,4)	,ylim=c(-3,4))	

>	title(main	=	"Call	Option	Tree")	

Now,	if	you	are	interested	in	calculating	the	put	option	value	then	you	should	use	the	first	parameter,	that
is,	TypeFlag="pe",	in	BinomialTreeOption().	As	the	number	of	steps	increases,	the	binomial	tree
results	converge	to	continuous	case.	This	can	be	verified	using	a	for	loop	with	100	iterations.	For	this,
we	can	define	the	func	function	with	one	parameter.

Here	is	the	definition	of	the	function:

>	func	<-	function(n)	{	

						pr		<-		CRRBinomialTreeOption(TypeFlag	=	"ce",	S	=	900,	X	=	950,	Time	=	1/4,	

r	=	0.02,	b	=	0.02,	sigma	=	0.22,	n	=	n)@price	

			return(pr)}	

In	the	following	figure,	you	can	see	the	option	price,	which	shows	the	price	at	each	node:

	

	

	

Figure	9.1:	Call	option	value	at	each	node

The	rightmost	layer	has	four	nodes	and	the	prices	are	0,	0,	9.01,	and	138.9	from	down.	The	third	layer	has
three	nodes	and	the	prices	are	0,	4.47	and	73.47,	and	so	on.

Figure	9.1	is	for	three	time	steps.	However,	we	can	increase	the	number	of	steps	and	the	option	price
starts	converging	to	fair	price	as	the	number	of	steps	increases.	We	have	to	put	the	func	function	into	the
loop	from	1	to	100.	Next,	we	can	plug	this	into	sapply()	along	with	iterations	1	to	100	and	func,	which
results	in	a	sequence	of	100	option	prices	with	an	increasing	number	of	steps.

The	following	code	shows	the	use	of	sapply(),	and	Figure	9.2	shows	the	binomial	prices	and	CRR
prices	with	100	step	sizes:

price	<-	sapply(1:100,func)	

As	the	number	of	steps	increases,	we	can	see	in	the	following	figure	that	CRR	price	converges	to	Black-
Scholes	price:

	

	

	

Figure	9.2:	Black-Scholes	and	CRR	prices

Greeks
Greeks	are	also	very	important	in	option	pricing.	It	helps	to	understand	the	movement	of	option	price
against	different	factors	such	as	underlying	price,	time	to	expiry,	risk-free	rate	of	return,	and	volatility.
The	GBSGreeks()	function	calculates	Greeks,	where	the	first	parameter	is	for	what	Greek	we	are
interested	in,	the	second	is	for	option	type,	the	third	is	for	underlying	price,	the	fourth	for	exercise	price,
the	fifth	for	time	to	maturity,	the	sixth	for	risk-free	rate	of	interest,	and	the	seventh	and	eighth	for
annualized	cost	of	carry	and	annualized	volatility.	Using	the	following	code,	we	can	calculate	delta	of
the	call	option:

>	GBSGreeks(Selection	=	"delta",	TypeFlag	=	"c",	S	=	900,	X	=	950,Time	=	1/4,	r	=	

0.02,	b	=	0.02,	sigma	=	0.22)	

[1]	0.3478744	

Similarly,	you	can	change	the	second	parameter	to	p,	which	will	give	you	delta	for	the	put	options.
Understanding	of	Greeks	is	important	as	this	shows	how	Greeks	change	with	other	market	parameters.
This	helps	to	diversify	portfolios	and	control	risk.	Gamma	can	be	calculated	using	the	following	code:

>	GBSGreeks(Selection	=	'gamma',	TypeFlag	=	"c",	S	=	900,	X	=	950,Time	=	1/4,	r	=	

0.02,	b	=	0.02,	sigma	=	0.22)	

[1]	0.003733069	

Similarly,	you	can	calculate	Vega,	Rho,	and	Theta	for	call	and	put	options	controlling	the	first	and
second	parameters.	Now,	suppose	you	want	to	calculate	delta	of	a	straddle	portfolio,	that	is,	a	portfolio
of	call	and	put	options	for	the	same	underlying,	striking	price,	and	expiration	date,	you	should	calculate
delta	separately	for	call	and	put	options	and	add	them.

The	following	code	calculates	the	delta	for	call	and	put	options	for	prices	ranging	from	500	to	1500
with	increment	of	1:

>portfolio<-	sapply(c('c',	'p'),	function(otype)	

sapply(500:1500,	function(price)	GBSGreeks(Selection	=	'delta',	TypeFlag	=	otype,	S	

=	price,X	=	950,	Time	=	1/4,	r	=	0.02,	b	=	0.02,	sigma	=	0.22)))	

This	command	shows	the	first	few	values	of	the	call	and	put	option	delta	separately.	The	first	column	is
for	call	and	the	second	column	is	for	put	option	delta:

>	head(portfolio)	

																c												p	

[1,]	4.902164e-09											-1	

[2,]	5.455563e-09											-1	

[3,]	6.068198e-09											-1	

[4,]	6.746050e-09											-1	

[5,]	7.495664e-09											-1	

We	plot	the	straddle	portfolio's	delta	using	plot()	using	the	following	code:

>	plot(500:1500,	rowSums(portfolio),	type='l',xlab='underlying	Price',	ylab	=	

'Straddle	Delta')	

The	first	parameter	is	the	x	axis,	which	is	underlying	price;	in	our	case,	it	is	ranging	from	500	to	1500.
The	second	parameter	is	the	y	axis,	which	is	the	sum	of	call	and	put	delta,	keeping	all	other
parameters	constant.	The	following	figure	shows	the	delta	for	the	straddle	portfolio	which	lies	between
-1	to	1	and	is	S-shaped:

	

	

	

Figure	9.3:	Delta	of	straddle	portfolio

Implied	volatility
In	option	trading,	we	calculated	volatility	as	historical	volatility	and	implied	volatility.	Historical
volatility	is	the	price	deviation	in	the	past	one	year	while	implied	volatility,	on	the	other	hand,	is
calculated	using	option	price	and	implies	stock	volatility	in	the	future.	Implied	volatility	is	crucial	in
option	trading	as	it	gives	the	future	estimate	of	stock	volatility.	European	call	option	implied	volatility
can	be	calculated	using	EuropeanOptionImpliedVolatility(),	as	shown	in	the	following	code.	The
first	parameter	is	type	of	option,	the	second	is	call	or	put	price,	the	third	and	fourth	are	current	price	of
underlying	and	strike	price	of	option,	the	fifth	is	dividend	yield,	and	the	sixth,	seventh,	and	eighth
parameters	are	risk-free	rate	of	return,	time	to	maturity	in	years,	and	initial	guess	for	volatility:	>iv	<-
EuropeanOptionImpliedVolatility("call",	11.10,	100,	100,	0.01,	0.03,	0.5,0.4)	>	iv	[1]	0.3805953

Similarly,	implied	volatility	for	the	American	option	can	be	calculated	using
AmericanOptionImpliedVolatility().

Bond	pricing
Bonds	are	very	important	financial	instruments	as	they	provide	cash	flow	at	a	certain	time	at	the
predetermined	rate	or	current	market	rate.	Bonds	help	investors	to	create	well-diversified	portfolios.	One
must	calculate	bond	price,	yield,	and	maturity	precisely	to	get	a	better	idea	of	the	instrument.	We	are	going
to	use	package	termstrc	for	this.	We	have	to	install	and	load	it	into	the	R	workspace	using	the	following
code:

>	install.packages('termstrc')	

>	library('termstrc')	

We	will	use	the	data	govtbonds	in	the	package,	which	can	be	loaded	and	viewed	using	the	following
code:

>	data(govbonds)	

>	govbonds	

This	is	a	data	set	of	coupon	bonds	for:	

GERMANY	AUSTRIA	FRANCE	,		

observed	at	2008-01-30.	

The	variable	govbonds	has	bond	data	for	three	countries	-	Germany,	Austria,	and	France.	We	will	be
using	the	Germany	data	to	calculate	bond	prices,	which	can	be	accessed	using	govbonds[[1]].	The
following	two	lines	of	code	generate	cashflow	and	maturity	matrix:

>	cashflow	<-	create_cashflows_matrix(govbonds[[1]])	

>	maturity	<-	create_maturities_matrix(govbonds[[1]])	

Next,	we	will	look	at	the	usage	of	bond_prices(),	which	calculates	the	bond	prices.	beta	is	another
parameter	to	be	supplied	to	the	function	bond_prices().	Next	we	can	create	the	beta	variable	and
defined	bond_prices().	The	first	parameter	in	this	function	is	method,	which	supports	three	methods:

ns	for	Nelson/Siegel
dl	for	Diebold/Li
sv	for	the	Svensson	approach

We	will	choose	the	ns	method	for	the	following	code:

>	beta	<-	c(0.0323,-0.023,-0.0403,3.234)	

>	bp	<-		bond_prices(method="ns",beta,maturity,cashflow)	

The	variable	bp	has	spot	rates,	discount	factors,	and	bond	prices.	Any	information	can	be	accessed	using
$.	For	example,	you	can	bond	prices	using	the	following	code:

>	bp$bond_prices	

Bond	yield	is	investor	return	which	is	realized	on	bond	investment,	and	it	can	be	calculated	using
bond_yields().	The	following	two	lines	of	code	generate	cashflow	and	maturity	matrices,	which
include	dirty	prices	as	well:

>	cashflow	<-	create_cashflows_matrix(govbonds[[1]],include_price=T)	

>	maturity	<-	create_maturities_matrix(govbonds[[1]],include_price=T)	

The	following	code	calculates	the	bond	yield	and	maturities	in	matrix	form:

>by	<-	bond_yields(cashflow,maturity)	

The	output	of	the	preceding	code	can	be	seen	by	typing	the	following	command	head()	and	the	output	has
two	columns,	where	the	first	column	of	the	output	matrix	is	maturity	in	years	and	the	second	column	is	the
corresponding	bond	yield	for	the	corresponding	bonds.	Bond	names	are	given	as	an	index	of	output:

>	head(by)	

																													Maturity																										Yield									

DE0001141414																0.04383562																						0.03525805	

DE0001137131																0.12054795																						0.03424302	

DE0001141422																0.19726027																						0.03798065	

DE0001137149																0.36986301																						0.03773425	

The	following	figure	shows	yield	curve	or	term	structure	against	various	maturities.	Yields	fluctuate
initially	for	a	very	small	maturity	period	and	continuously	increase	as	the	maturity	increases:

	

	

	

Figure	9.4:	Yield	curve,	that	is,	term	structure	with	different	maturities

Duration	measures	the	length	of	time	it	takes	for	the	price	of	the	bond	to	be	repaid	by	its	internal
cashflow.	It	is	a	very	important	factor	for	investors	to	consider,	as	bonds	with	higher	duration	carry	more
risk	and	higher	price	volatility	than	bonds	with	lower	duration.	Duration	can	be	measured	using	the
following	code:

>			dur	<-	duration(cashflow,maturity,	by[,"Yield"])	

It	returns	duration	in	years,	modified	duration,	and	weights	for	all	bonds	in	the	portfolio.	If	you	want	to
look	at	the	portfolio	composition,	you	can	see	the	third	column	of	the	output	matrix.	The	third	column	is
weights	for	your	investment	and	you	would	see	that	the	sum	of	the	weights	is	equal	to	1:

>	sum(dur[,3])	

[1]	1	

Credit	spread
Credit	risk	is	one	of	the	major	problems	for	financial	institutions.	The	major	cause	for	this	is	credit
quality,	and	credit	spread	values	help	to	understand	credit	risk	depending	upon	the	credit	quality.	Credit
spread	is	an	important	concept	in	institutional	trading	as	credit	spread	depends	upon	the	quality	or	rating
of	bonds.	It	is	the	difference	in	bond	yield	of	two	bonds	with	similar	maturity	but	with	different	bond
ratings.	We	are	going	to	use	the	CreditMetrics	package	for	this,	which	can	be	installed	and	imported	to
the	R	workspace	using	the	following	two	commands:

>	install.packages('CreditMetrics')	

>	library('CreditMetrics')	

Credit	spread	is	calculated	using	cm.cs(),	which	has	just	two	parameters.	The	first	parameter	is	the	one-
year	migration	matrix	for	some	institution	or	government	which	issues	credit	and	the	second	parameter	is
loss	given	default	(LGD),	which	means	maximum	loss	if	the	obligor	of	credit	defaults.	Normally,	credit
with	rating	AAA	is	on	the	top	and	considered	as	safe,	and	rating	D	is	on	the	bottom	and	considered	as
default.

The	following	code	is	a	vector	of	all	credit	ratings:

>	rc	<-	c("AAA",	"AA",	"A",	"BBB",	"BB",	"B",	"CCC",	"D")	

The	preceding	code	shows	we	have	eight	ratings.	The	transition	matrix	is	the	probability	of	going	from
one	credit	rating	to	another.

This	code	generates	a	matrix	of	such	probabilities	in	an	eight-by-eight	matrix,	with	rating	as	index	and
column	names:

>	M	<-	matrix(c(90.81,	8.33,	0.68,	0.06,	0.08,	0.02,	0.01,	0.01,	

+	0.70,	90.65,	7.79,	0.64,	0.06,	0.13,	0.02,	0.01,	

+	0.09,	2.27,	91.05,	5.52,	0.74,	0.26,	0.01,	0.06,	

+	0.02,	0.33,	5.95,	85.93,	5.30,	1.17,	1.12,	0.18,	

+	0.03,	0.14,	0.67,	7.73,	80.53,	8.84,	1.00,	1.06,	

+	0.01,	0.11,	0.24,	0.43,	6.48,	83.46,	4.07,	5.20,	

+	0.21,	0,	0.22,	1.30,	2.38,	11.24,	64.86,	19.79,	

+	0,	0,	0,	0,	0,	0,	0,	100	

+)/100,	8,	8,	dimnames	=	list(rc,	rc),	byrow	=	TRUE)	

You	can	have	a	look	at	this	matrix	by	typing	the	variable	name,	that	is,	M,	on	the	command	prompt,	as
shown	here:

>	M	

									AAA					AA						A			BBB					BB						B		CCC						D	

AA		0.9081	0.0833	0.0068	0.0006	0.0008	0.0002	0.0001		0.0001	

AA		0.0070	0.9065	0.0779	0.0064	0.0006	0.0013	0.0002		0.0001	

A			0.0009	0.0227	0.9105	0.0552	0.0074	0.0026	0.0001		0.0006	

BBB	0.0002	0.0033	0.0595	0.8593	0.0530	0.0117	0.0112		0.0018	

BB		0.0003	0.0014	0.0067	0.0773	0.8053	0.0884	0.0100		0.0106	

B			0.0001	0.0011	0.0024	0.0043	0.0648	0.8346	0.0407		0.0520	

CCC	0.0021	0.0000	0.0022	0.0130	0.0238	0.1124	0.6486		0.1979	

D			0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	

You	can	see	in	the	preceding	table	that	the	last	column	has	probabilities	of	default	for	bonds	of	all	ratings;
that	means	it	is	very	unlikely	bonds	with	AAA,	AA,	and	A	rating	will	default.	However,	the	default
probability	increases	as	the	bond	rating	deteriorates	towards	CCC.	The	last	row	has	all	zeros	except	for
the	last	one,	which	means	bonds	which	are	default	have	zero	probability	of	improving	the	rating.	We	can
set	the	loss	given	default	(lgd)	parameter	as	0.2	in	the	following	code:

>	lgd	<-	0.2	

As	we	have	designed	a	transition	matrix	and	set	the	lgd	parameter,	we	can	now	use	the	cm.cs()	function
to	generate	credit	spread.

The	following	code	does	this	and	calculates	credit	spread	for	all	ratings	respectively:

>	cm.cs(M,	lgd)	

AAA												AA						A								BBB								BB								B						CCC		

0.0000200		0.0000200		0.000120	0.000360	0.002122	0.010454	0.040384	

The	preceding	results	illustrate	that	credit	spread	is	less	for	good	credit	rating	bonds	and	it	increases	as
we	move	toward	the	left	or	as	the	probability	of	default	increases.	The	rightmost	rating	CCC	has	the
highest	spread	of	4%	because,	as	per	above	matrix	M,	the	probability	of	default	for	CCC	rating	bonds	is
19.79	%	.Value	at	risk	for	this	credit	can	be	calculated	using	cm.CVaR(),	which	has	nine	parameters.	The
first	two	parameters	are	the	same	as	for	cm.cs(),	that	is,	migration	matrix	and	loss	given	default	(lgd),
and	the	remaining	are	exposure	at	default,	number	of	companies,	number	of	simulated	random	numbers,
risk-free	interest,	correlation	matrix,	confidence	level,	and	rating	of	companies.

All	parameters	are	set	as	follows:

>	ead	<-	c(4000000,	1000000,	10000000)						#		Exposure	at	default	

>	N	<-	3										#	Number	of	companies	

>	n	<-	50000						#	Number	of	simulated	random	numbers	

>r	<-	0.03																	#	Risk	free	interest	rate	

>	rating	<-	c("BBB",	"AA",	"B")								#	Rating	of	selected	companies	

>	firmnames	<-	c("firm	1",	"firm	2",	"firm	3")	

>	alpha	<-	0.99									#	Confidence	interval	

#	Correlation	matrix	

>	rho	<-	matrix(c(1,	0.4,	0.6,	0.4,	1,	0.5,	0.6,	0.5,	1),	3,	3,	dimnames	=	

list(firmnames,	firmnames),	byrow	=	TRUE)	

Credit	value	at	risk	can	be	used	in	the	following	line	of	code,	where	the	parameters	are	as	defined
previously:

>	cm.CVaR(M,	lgd,	ead,	N,	n,	r,	rho,	alpha,	rating)	

					1%		

3993485	

This	credit	VaR	number	is	annualized,	which	means	there	is	a	1%	chance	that	this	portfolio	of	three
companies	might	lose	this	value	in	the	next	year.	This	output	is	based	on	simulated	prices.	Simulated
prices	change	in	every	run	so	cm.CVaR()	output	might	also	change	every	time	you	execute	the	preceding
code.	ca.gain(),	which	requires	all	the	parameters	as	cm.CVaR()	except	alpha,	is	used	to	calculate
simulated	profit	and	loss	and	can	be	used	like	the	following	code:

>	pnl	<-	cm.gain(M,	lgd,	ead,	N,	n,	r,	rho,	rating)	

Credit	default	swaps
In	brief,	a	credit	default	swap	(CDS)	is	used	to	transfer	the	credit	risk	of	a	reference	entity	(corporate	or
sovereign)	from	one	party	to	another.	In	a	standard	CDS	contract,	one	party	purchases	credit	protection
from	another	party,	to	cover	the	loss	of	the	face	value	of	an	asset	following	a	credit	event.	A	credit	event
is	a	legally	defined	event	that	typically	includes	bankruptcy,	failure-to-pay,	and	restructuring.	The
protection	lasts	until	some	specified	maturity	date.	To	pay	for	this	protection,	the	protection	buyer	makes
a	regular	stream	of	payments,	known	as	the	premium	leg,	to	the	protection	seller.	This	size	of	these
premium	payments	is	calculated	from	a	quoted	default	swap	spread,	which	is	paid	on	the	face	value	of	the
protection.	These	payments	are	made	until	a	credit	event	occurs	or	until	maturity,	whichever	occurs	first.
The	issuer	of	the	CDS	derivative	has	to	price	it	before	selling.	We	will	be	using	the	credule	package	for
this.

These	two	codes	are	used	for	installing	this	package	and	loading	it	into	the	R	workspace:

>	install.packages('credule')	

>	library('credule')	

priceCDS()	calculates	the	spread	of	several	CDSs	of	different	maturities	from	a	yield	curve	and	credit
curve.	Here,	we	are	going	to	define	parameters	which	will	be	used	for	pricing	CDSs.	The	yield	curve
vector	is	defined	below	and	is	the	tenor	of	each	yield	curve	in	years:

>yct	=	c(1,2,3,4,5,7)	

Here,	the	vector	is	defined	as	yield	curve	discounted	rate,	which	is	going	to	be	the	second	parameter	in
the	pricing	CDS	function:

>	ycr	=	c(0.0050,0.0070,0.0080,0.0100,	0.0120,0.0150)	

The	following	two	lines	of	code	define	the	tenor	of	the	credit	curve	in	years	and	survival	probability	for	a
tenor:

>cct	=	c(1,3,5,7)	

>ccsp	=	c(0.99,0.98,0.95,0.92)	

Next	is	the	maturity	of	the	CDS	in	years,	which	we	are	going	to	price:

>tenors	=	c(1,3,5,7)	

Another	parameter	is	defined	here,	which	is	recovery	rate	in	case	of	default:

>r	=	0.40	

We	have	successfully	defined	mandatory	parameters.	The	next	line	does	the	job	of	pricing	the	CDS	of
multiple	tenors:

>	priceCDS(yct,ycr,cct,ccsp,tenors,r)	

		tenor						spread	

					1	0.006032713	

					3	0.004057761	

					5	0.006101041	

					7	0.007038156	

The	preceding	function	returns	a	DataFrame	where	the	first	column	is	tenors	and	the	second	column	is
spreads	for	credit	default	swaps	(CDS)	for	a	given	tenor.	If	you	would	like	to	use	the	bootstrap
technique	to	understand	the	probability	distribution	of	credit	default	swaps	then	you	can	use
bootstrapCDS(),	which	has	yield	curve	tenor,	yield	curve	rates,	CDS	tenor,	CDS	spread,	and	recovery
rates.	We	are	going	to	define	the	cdsSpread	parameter,	as	all	other	parameters	have	already	been	defined
above,	which	we	will	use	in	bootstrapCDS():

>	cdsSpreads	=	c(0.0050,0.0070,0.0090,0.0110)	

The	following	command	gives	the	bootstrap	credit	curve	for	credit	default	swap	spreads	for	different
maturities:

>	bootstrapCDS(yct,ycr,cct,ccsp,r)

tenor				survprob						hazrate

1					1	0.187640397		1.673228e+00

2					3	0.007953847		1.580436e+00

3					5	0.007953847		2.081668e-15

4					7	0.007953847		4.579670e-15

The	output	of	the	preceding	command	generates	three	columns.	The	first	is	the	tenor,	the	second	column	is
survival	probability	for	each	tenor,	and	the	last	column	is	hazard	rate,	that	is,	the	intensity	of	Poisson
distribution,	for	each	tenor.

Interest	rate	derivatives
We	will	use	the	GUIDE	package	to	calculate	the	price	for	interest	rate	derivatives:	>
install.packages("GUIDE")	>	library(GUIDE)

The	following	command	will	open	a	pop-up	window	which	requires	all	the	parameters.	Once	you	supply
the	required	parameters	in	the	pop-up	window,	it	generates	the	interest	rate	derivative	price:
>irswapvalue()

Parameters	to	be	supplied	in	the	pop-up	window	are	as	follows:

Notional:	To	be	entered	in	decimals
Fixed	rate:	Entered	in	decimals,	for	example,	0.05	for	5%
Last	spot	rate:	Entered	in	decimals,	for	example,	0.05	for	5	per	cent
Months	for	first	payment:	Enter	3	for	3	months
Spot	rates:	Enter	with	comma	separation,	for	example,	0.054,	0.056,	0.058
Frequency	of	spot	rates:	Chosen	from	continuous/quarterly/semi-annual/annual
Settlement	frequency:	Chosen	from	quarterly/semi-annual/annual

Exotic	options
Asian,	barrier,	binary,	and	lookback	options	are	a	few	exotic	options.	Exotic	options	are	quite	different
than	normal	American	or	European	options,	or	vanilla	options,	and	have	a	few	new	features	which	make
it	quite	complex	to	price.	An	American	or	European	call	or	put	option	is	considered	as	a	non-exotic	or
vanilla	option.	Exotic	options	are	complex	because	of	a	few	features:

The	way	it	gets	settled	varies	depending	on	the	moneyless	of	the	option	at	the	time	of	maturity.	It	can
be	settled	in	cash	as	well	as	stock	options.
It	could	also	involve	foreign	exchange	rates.
Payoff	at	the	time	of	maturity	depends	not	just	on	the	underlying	stock	price	but	on	its	value	at
several	times	during	the	contract	life.

We	will	be	using	the	fExoticOptions	package	to	price	various	types	of	exotic	options.	For	this,	the
following	two	lines	of	code	are	used	to	install	and	load	this	package	into	the	R	workspace:

>	install.packages('fExoticOptions')	

>	library(fExoticOptions)	

Asian	options	can	be	priced	in	different	ways.	Here	are	a	few	functions	to	price	Asian	options.
GeometricAverageRateOption()	prices	Asian	options	based	on	geometric	average	rate	options.

Here	is	a	code	with	the	Asian	call	option	pricing	function	using	geometric	average	rate	option.	The	first
parameter	is	the	call	("c")	option	and	other	parameters	are	stock	price	(110),	exercise	price	(120),	time
to	maturity	(0.5,	that	is,	6	months),	risk-free	interest	rate	(3%),	cost	of	carry	(5%),	and	volatility	(10%):

>	price	<-	GeometricAverageRateOption("c",	110,	120,	0.5,	0.03,	0.05,	0.1)	

>	price	

Title:	

	Geometric	Average	Rate	Option		

Call:	

	GeometricAverageRateOption(TypeFlag	=	"c",	S	=	110,	X	=	120,		

					Time	=	0.5,	r	=	0.03,	b	=	0.05,	sigma	=	0.1)	

	

	

Parameters:	

	Value:	

	TypeFlag	c						

	S								110				

	X							120				

	Time					0.5				

	r								0.03			

	b								0.05			

	sigma																			0.1				

Option	Price:	

	0.06067219		

Description:	

	Sun	Jan	15	01:00:34	2017	

You	can	calculate	the	price	for	Asian	put	options	as	well	by	replacing	c	with	p.
TurnbullWakemanAsianApproxOption()	also	calculates	the	Asian	option	price	and	is	based	on

Turnbull	and	Wakeman's	approximation.	It	uses	two	new	parameters	(SA),	time	and	tau	in	addition	to
parameters	used	in	previous	functions.	SA	and	time	are	used.	Here	is	the	code:

>	TurnbullWakemanAsianApproxOption(TypeFlag	=	"p",	S	=	100,	SA	=	102,	X	=	120,	Time	

=	0.50,	time	=	0.25,	tau	=	0.0,	r	=	0.03,	b	=	0.05,	sigma	=	0.1)@price	

[1]	18.54625	

However,	there	is	another	technique	to	calculate	the	Asian	option	price	by	using
LevyAsianApproxOption(),	which	uses	Levy's	approximation	to	price	Asian	options	and	use	all
parameters	used	in	TurnbullWakemanAsianApproxOption()	except	tau:

>	LevyAsianApproxOption(TypeFlag	=	"p",	S	=	100,	SA	=	102,	X	=	120,	Time	=	0.50,	

time	=	0.25,	r	=	0.03,		b	=	0.05,	sigma	=	0.1)@price	

[1]	18.54657	

There	are	many	functions	to	calculate	the	price	for	barrier	options	as	well.	Standard	barrier	option,
double	barrier	option,	and	lookback	barrier	option	are	a	few	of	them.	There	are	four	types	of	single
barrier	options.

The	type	flag	cdi	denotes	a	down-and-in	call,	cui	denotes	an	up-and-in	call,	cdo	denotes	a	down-and-out
call,	and	cuo	denotes	an	up-and-out	call.

The	following	command	calculates	the	standard	barrier	option	price	using	StandardBarrierOption(),
which	requires	two	additional	parameters	in	GeometricAverageRateOption()	and	these	additional
parameters	are	barrier	value	and	rebate	value.

The	first	parameter	is	option	type,	which	is	a	down-and-out	call	in	the	following	command:

>		StandardBarrierOption(TypeFlag	=	"cdo",	S	=	100,	X	=	90,	H	=	95,	K	=	3,	Time	=	

0.5,	r	=	0.08,	b	=	0.04,	sigma	=	0.25)@price

[1]	9.024584

In	the	preceding	command,	H	=	95	is	barrier	value	and	K=3	is	rebate.	Double	barrier	option	requires
lower	(L)	and	upper	(U)	bounds	along	with	curvature	of	lower	and	upper	bounds,	that	is,	delta1	and
delta2.	It	also	has	four	types	of	options.

The	type	flag	co	denotes	an	up-and-out-down-and-out	call,	ci	denotes	an	up-and-in-down-and-in	call,
po	denotes	an	up-and-out-down-and-out	put,	and	pi	denotes	an	up-and-in-down-and-in	call.	We	will	use
co	type	option	in	the	following	command	along	with	other	parameters	to	calculate	the	double	barrier
option	price:

>		DoubleBarrierOption(TypeFlag	=	"co",	S	=	100,	X	=	100,	L	=	50,U	=	150,	Time	=	

0.25,	r	=	0.10,	b	=	0.10,	sigma	=	0.15,delta1	=	-0.1,	delta2	=	0.1)@price

[1]	4.351415

The	option	comes	into	existence	if	it	is	a	knock-in	barrier	or	becomes	worthless	if	it	is	a	knocked-out
barrier.	Lookback	barrier	is	another	type	of	barrier	option	and	it	also	has	four	types,	cuo	denotes	an	up-
and-out	call,	cui	denotes	an	up-and-in	call,	pdo	denotes	a	down-and-out	put,	pdi	denotes	a	down-and-in
put.The	option's	barrier	monitoring	period	starts	at	time	zero	and	ends	at	an	arbitrary	date	before

expiration.	If	the	barrier	is	not	triggered	during	this	period,	the	fixed	strike	lookback	option	will	be
kicked	off	at	the	end	of	the	barrier	tenor.

The	following	line	of	code	calculates	the	lookback	barrier,	that	is,	cuo,	option	price:

>	LookBarrierOption(TypeFlag	=	"cuo",	S	=	100,	X	=	100,	H	=	130,time1	=	0.25,	Time2	

=	1,	r	=	0.1,	b	=	0.1,	sigma	=	0.15)@price	

[1]	17.05969	

Barrier	options	are	another	kind	of	exotic	option,	which	are	also	called	digital	options.	Unlike	standard
European-style	options,	the	payout	for	binary	options	does	not	depend	on	how	much	it	is	in	the	money	but
rather	whether	or	not	it	is	on	the	money.	The	option's	payoff	is	fixed	at	the	option's	inception	and	is	based
on	the	price	of	the	underlying	asset	on	the	expiration	date.	Gap	option,	cash	or	nothing,	and	two	asset	cash
or	nothing	are	a	few	of	the	binary	options.	The	payoff	on	a	gap	option	depends	on	the	usual	factors	of	a
plain	option,	but	is	also	affected	by	a	gap	amount	of	exercise	prices,	which	may	be	positive	or	negative.
The	following	commands	calculate	gap	option,	which	is	one	of	the	binary	options,	price	using
GapOption()	and	the	X1	and	X2	parameters	in	this	function	are	two	exercise	price	which	create	gap
option,	and	all	other	parameters	are	as	usual:

>	GapOption(TypeFlag	=	"c",	S	=	50,	X1	=	50,	X2	=	57,	Time	=	0.5,r	=	0.09,	b	=	

0.09,	sigma	=	0.20)	

CashOrNothingOption()	calculates	the	price	for	the	cash	or	nothing	option	and	for	this	option,	a
predetermined	amount	is	paid	at	expiration	if	the	asset	is	above	for	a	call	or	below	for	a	put	at	strike
level.	The	amount	independent	of	the	path	is	taken.	These	options	require	no	payment	of	an	exercise	price.
The	exercise	price	determines	whether	or	not	the	option	returns	a	payoff.	The	value	of	a	cash-or-nothing
call	(put)	option	is	the	present	value	of	the	fixed	cash	payoff	multiplied	by	the	probability	that	the
terminal	price	will	be	greater	than	(less	than)	the	exercise	price.	The	following	line	has	S	as	stock	price,
X	as	exercise	price,	and	K	as	cash	amount	to	be	paid	at	expiry	if	the	option	expires	in	the	money:

>	CashOrNothingOption(TypeFlag	=	"p",	S	=	100,	X	=	80,	K	=	10,Time	=	9/12,	r	=	

0.06,	b	=	0,	sigma	=	0.35)	

Two	Asset	Cash	or	Nothing	options	are	building	blocks	for	constructing	more	complex	exotic	options	and
there	are	four	types	of	two	asset	cash	or	nothing	options.	The	first	two	situations	are:	a	Two	Asset	Cash
or	Nothing	call	which	pays	out	a	fixed	cash	amount	if	the	price	of	the	first	asset	is	above	(below)	the
strike	price	of	the	first	asset	and	the	price	of	the	second	asset	is	also	above	(below)	the	strike	price	of	the
second	asset	at	expiration.	The	other	two	situations	arise	under	the	following	conditions:	a	Two	Asset
Cash	or	Nothing	down-up	pays	out	a	fixed	cash	amount	if	the	price	of	the	first	asset	is	below	(above)	the
strike	price	of	the	first	asset	and	the	price	of	the	second	asset	is	above	(below)	the	strike	price	of	the
second	asset	at	expiration.

The	following	function	does	the	job	of	calculating	the	two	asset	cash	or	nothing	option	price:

>	TwoAssetCashOrNothingOption(TypeFlag	=	"c",	S1	=	100,	S2	=	100,X1	=	110,	X2	=	90,	

K	=	10,	Time	=	0.5,	r	=	0.10,	b1	=	0.05,b2	=	0.06,	sigma1	=	0.20,	sigma2	=	0.25,	

rho	=	0.5)@price	

[1]	2.49875	

Here:

TypeFlag	:	Option	type	"c"	for	call	"p"	for	put
S1,	S2:	Stock	price	for	two	assets
X1,	X2:	Two	exercise	prices
K:	Cash	amount	to	be	paid	at	expiry
Time:	Time	to	expiry
r:	Risk-free	interest	rate
b1,	b2:	Cost	of	carry	for	two	assets
sigma1,	sigma2:	Two	asset	volatility
rho:	Correlation	between	two	assets

There	is	much	more	detail	available	about	all	other	type	of	exotic	options	and	for	more	details	about
exotic	options,	you	should	look	at	the	PDF	file	with	the	name	fExoticOptions	which	you	can	download
from	the	Web.

Questions
1.	 What	are	the	packages	to	be	used	for	option,	bond,	and	exotic	options	pricing?
2.	 Which	functions	will	you	use	to	calculate	the	option	price	using	the	Black-Scholes	and	Cox-Ross-

Rubinstein	methods?
3.	 How	does	the	CRR	price	converge	to	the	binomial	price	and	which	command	would	you	use	to

calculate	Greeks?
4.	 Write	a	command	to	calculate	implied	volatility.
5.	 How	would	you	prepare	a	cashflow	and	maturity	matrix	to	the	form	which	would	be	used	in	bond

pricing	function,	and	which	function	would	be	used	for	bond	pricing?
6.	 What	are	the	functions	to	be	used	for	credit	spread	and	credit	default	swaps?
7.	 What	are	the	Asian	option	types,	barrier	option	types,	and	digital	option	types?
8.	 What	are	the	functions	you	would	use	for	the	options	in	question	7?

Summary
This	chapter	used	derivative	pricing	only	in	terms	of	implementation	in	R,	and	various	packages	such	as
foptions,	termstrc,	CreditMetrics,	credule,	GUIDE,	and	fExoticOptions	to	price	options,	bonds,
credit	spreads,	credit	default	swaps,	and	interest	rate	derivatives,	and	different	types	of	exotic	options
were	used.	Derivative	pricing	is	crucial	in	derivative	trading	and	it	is	very	important	to	learn	it.

This	chapter	also	covered	the	Black-Scholes	and	Cox-Ross-Rubinstein	methods,	along	with	Greeks	and
implied	volatility	for	options.	It	also	explained	bond	price	and	yield	curves.	It	also	used	functions	which
explain	how	credit	spread,	credit	default	swaps,	and	interest	rate	derivatives	are	priced.	Toward	the	end,
it	covered	various	types	of	exotic	options.	It	used	data	given	in	relevant	packages	and	implemented
functions.

	Learning Quantitative Finance with R
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Why subscribe?
	Customer Feedback
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Introduction to R
	The need for R
	How to download/install R
	How to install packages
	Installing directly from CRAN
	Installing packages manually
	Data types
	Vectors
	Lists
	Matrices
	Arrays
	Factors
	DataFrames
	Importing and exporting different data types
	How to read and write a CSV format file
	XLSX
	Web data or online sources of data
	Databases
	How to write code expressions
	Expressions
	Constant expression
	Arithmetic expression
	Conditional expression
	Functional call expression
	Symbols and assignments
	Keywords
	Naming variables
	Functions
	Calling a function without an argument
	Calling a function with an argument
	How to execute R programs
	How to run a saved file through R Window
	How to source R script
	Loops (for, while, if, and if...else)
	if statement
	if...else statement
	for loop
	while loop
	apply()
	sapply()
	Loop control statements
	break
	next
	Questions
	Summary
	2. Statistical Modeling
	Probability distributions
	Normal distribution
	norm
	pnorm
	qnorm
	rnorm
	Lognormal distribution
	dlnorm
	plnorm
	qlnorm
	rlnorm
	Poisson distribution
	Uniform distribution
	Extreme value theory
	Sampling
	Random sampling
	Stratified sampling
	Statistics
	Mean
	Median
	Mode
	Summary
	Moment
	Kurtosis
	Skewness
	Correlation
	Autocorrelation
	Partial autocorrelation
	Cross-correlation
	Hypothesis testing
	Lower tail test of population mean with known variance
	Upper tail test of population mean with known variance
	Two-tailed test of population mean with known variance
	Lower tail test of population mean with unknown variance
	Upper tail test of population mean with unknown variance
	Two tailed test of population mean with unknown variance
	Parameter estimates
	Maximum likelihood estimation
	Linear model
	Outlier detection
	Boxplot
	LOF algorithm
	Standardization
	Normalization
	Questions
	Summary
	3. Econometric and Wavelet Analysis
	Simple linear regression
	Scatter plot
	Coefficient of determination
	Significance test
	Confidence interval for linear regression model
	Residual plot
	Normality distribution of errors
	Multivariate linear regression
	Coefficient of determination
	Confidence interval
	Multicollinearity
	ANOVA
	Feature selection
	Removing irrelevant features
	Stepwise variable selection
	Variable selection by classification
	Ranking of variables
	Wavelet analysis
	Fast Fourier transformation
	Hilbert transformation
	Questions
	Summary
	4. Time Series Modeling
	General time series
	Converting data to time series
	zoo
	Constructing a zoo object
	Reading an external file using zoo
	Advantages of a zoo object
	Subsetting the data
	Merging zoo objects
	Plotting zoo objects
	Disadvantages of a zoo object
	xts
	Construction of an xts object using as.xts
	Constructing an xts object from scratch
	Linear filters
	AR
	MA
	ARIMA
	GARCH
	EGARCH
	VGARCH
	Dynamic conditional correlation
	Questions
	Summary
	5. Algorithmic Trading
	Momentum or directional trading
	Pairs trading
	Distance-based pairs trading
	Correlation based pairs trading
	Co-integration based pairs trading
	Capital asset pricing model
	Multi factor model
	Portfolio construction
	Questions
	Summary
	6. Trading Using Machine Learning
	Logistic regression neural network
	Neural network
	Deep neural network
	K means algorithm
	K nearest neighborhood
	Support vector machine
	Decision tree
	Random forest
	Questions
	Summary
	7. Risk Management
	Market risk
	Portfolio risk
	VaR
	Parametric VaR
	Historical VaR
	Monte Carlo simulation
	Hedging
	Basel regulation
	Credit risk
	Fraud detection
	Liability management
	Questions
	Summary
	8. Optimization
	Dynamic rebalancing
	Periodic rebalancing
	Walk forward testing
	Grid testing
	Genetic algorithm
	Questions
	Summary
	9. Derivative Pricing
	Option pricing
	Black-Scholes model
	Cox-Ross-Rubinstein model
	Greeks
	Implied volatility
	Bond pricing
	Credit spread
	Credit default swaps
	Interest rate derivatives
	Exotic options
	Questions
	Summary

